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We study metastability and nucleation for the Blume-Capel model: a ferro- 
magnetic nearest neighbor two-dimensional lattice system with spin variables 
taking values in { - I, 0, + 1 }. We consider large but finite volume, small IrLxed 
magnetic field h, and chemical potential 2 in the limit of zero temperature; we 
analyze the first excursion from the metastable- 1 configuration to the stable 
+ 1 configuration. We compute the asymptotic behavior of the transition time 
and describe the typical tube of trajectories during the transition. We show that, 
unexpectedly, the mechanism of transition changes abruptly when the line 
h = 22 is crossed. 

KEY WORDS: Blume-Capel model; stochastic dynamics; metastability; 
nucleation. 

1. I N T R O D U C T I O N  

Metas tab i l i ty  is a re levant  p h e n o m e n o n  for t h e r m o d y n a m i c  systems close 
to a first o rde r  phase  t ransi t ion.  

Let us s tar t  f rom a given pure  equ i l ib r ium phase  in a sui table  region 
of  the phase  d i a g r a m  and change  the t h e r m o d y n a m i c  pa rame te r s  to values 
co r r e spond ing  to a different equ i l ib r ium phase;  then, in pa r t i cu la r  
exper imenta l  s i tuat ions ,  the system, ins tead of  undergo ing  a phase  t ransi-  
t ion, can still remain  in a "wrong"  equi l ibr ium,  far f rom the " t rue"  one but  
ac tual ly  close to wha t  the equi l ib r ium would  be at  the o ther  side of  the 
t ransi t ion.  This appa ren t  equi l ibr ium,  often called the "metas tab le  state,"  
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persists until an external perturbation or some spontaneous fluctuation 
leads the system to the stable equilibrium. 

For general review on metastability with particular attention to 
rigorous results see refs. 17 and 18. 

There are strong arguments leading to the conclusion that meta- 
stability can neither be included in the scheme of the Gibbsian formalism, 
which is confined to the description of the genuine stable equilibrium 
states, r nor can it be directly described using extrapolation beyond the 
condensation point, because of the presence of an essential singularity of 
the free energy (see the fundamental result due to Isakov.) ~81 

Metastability is a genuine dynamical phenomenon. Its description, on 
one hand, is of basic importance from the point of view of fundamental 
physics, and on the other hand it poses interesting new mathematical 
problems.14, ,5. 161 

Since a general approach to nonequilibrium statistical mechanics is 
still missing, a crucial role is played by particular models of microscopic 
dynamics. It is remarkable that, quite recently, rigorous results have been 
deduced in this field by analyzing, in particular, the geometry of the con- 
densation nuclei as well as the possible coalescence between droplets. 
Notice that these aspects were totally absent in previous theories such as 
the socalled classical theory of nucleationJ ~7~ 

In recent years much progress has been made in the understanding of 
the phenomenon of metastability in the framework of Glauber dynamics. 
By Glauber dynamics we mean a stochastic time evolution of a lattice spin 
system (in continuous or discrete time) whose elementary process is a 
single spin change and which is reversible (namely it satisfies the detailed 
balance condition) with respect to the Gibbs measure corresponding to a 
given Hamiltonian. There is a certain freedom in choosing a particular 
dynamics satisfying the above requirements. A typical choice, which 
actually we will make in the present paper, is called "Metropolis dynamics" 
[see Eq. (2.6) below]. 

The case of the standard Ising model (spin + 1 or-1 ,  ferromagnetic 
nearest neighbor interaction), often referred to as the stochastic Ising model 
or kinetic Is#~g model, has been analyzed, in two dimensions in ref. 12 in 
connection with relaxation to equilibrium for arbitrarily large (and even 
infinite) systems close to the first-order phase transition. 

In a quite complete treatment, Neves and Schonmann ~3, 14)analyzed, 
in the framework of the "pathwise approach to metastability" introduced 
some years ago in ref. 4, the phenomenon of nucleation for large but finite 
volume and small magnetic field in the zero temperature limit. 

Schonmann,C 19) using an argument based on reversibility, described in 
detail the typical escape paths. 



Metastability and Nucleation for Blume-Capel Model 475 

Other asymptotic regimes, very interesting from a physical point of 
view and mathematically much more complicated, are considered in refs. 20 
and 21. 

In the same asymptotic regime as in ref. 13, different Hamiltonians 
have been considered in refs. 9 and 10, where it has been shown that the 
typical path followed during the growth of the stable phase in general is 
not of Wulff type. Here by Wulff (shape) we mean the equilibrium shape 
of a droplet at zero temperature, namely the shape minimizing the surface 
energy for fixed volume. This non-Wulff growth seems to be an interesting 
phenomenon in the description of crystal growth. 

Let us now try to explain the nature of the mathematical difficulties 
related to our problem. We notice that in the above-mentioned asymptotic 
regime the behavior is similar to the one described by Freidlin and 
Wentzell in their analysis of small random perturbations of dynamical 
systems: the system typically performs random oscillations around the local 
minima of the energy and sometimes it goes against the drift following 
some preferential ways. In particular, it is interesting to characterize the 
typical tube of trajectories during the first excursion from the metastable to 
the stable equilibrium. This first excursion can be seen as an escape from 
a sort of generalized basin f~ of attraction of the metastable equilibrium. It 
turns out that many local equilibria are contained in f# and this more 
general situation goes beyond the approach developed by Freidlin and 
Wentzel, 171 who were able to give a full description of the typical tube of 
escape only for the case of a domain D completely attracted by a unique 
stable point. 

In our more general case, as we will see, new interesting phenomena 
take place involving a sort of "temporal entropy." These phenomena are 
taken into account in refs. 15 and 16, where a complete description of the 
typical tube of escape is given in general. 

For attractive short-range systems the main feature of the transition 
appears to be the formation of a critical nucleus with suitable shape and 
size. This critical droplet results from a competition between the bulk 
energy favoring growth and the surface energy favoring contraction. Only 
for large sizes and for particular shapes will the droplet tend to grow. 

The present paper is devoted to the study of metastability and nuclea- 
tion in the framework of a dynamical Blume-Capel model. It is a two- 
dimensional spin system where the single spin variable can take three 
possible values: - 1 ,  0, +1. It was originally introduced to study the 
3He-aHe phase transition. 

One can think of it as a system of particles with spin. The value a.,. = 0 
of the spin at the lattice site x will correspond to absence of particles (a 
vacancy), whereas the values a.,. = + 1, - 1  will correspond to the presence 
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at x of a particle with spin + 1, - 1 ,  respectively. The formal Hamiltonian 
is given by 

n ( a ) = J  ~ ( c r , . - a , , ) 2 - 2 ~ a ~ . - h ~ a . ~  (1.1) 
< x ,  y >  x x 

where 2 and h are two real parameters, having the meaning of the chemical 
potential and the external magnetic field, respectively; J is a real, positive 
constant (ferromagnetic interaction) and (x ,  y> denotes a generic pair of 
nearest neighbor sites in Z 2. 

In the following we will consider the system enclosed in a two-dimen- 
sional torus A. Let - 1 ,  0_, and +1 denote the configurations with all the 
spins in A equal to - 1 ,  0, + 1, respectively. The structure of the set of 
ground states corresponding to different values of 2 and h will be discussed 
in Section 2. Now we only note that it is immediate to see that for 2 = h = 0 
the configurations - 1 ,  _0, and + 1 are the only ground states. It has been 
shown, using Pirogov-Sinai theory, that this phase transition persists at 
positive temperature T =  1//3 in the thermodynamic limit} ~-3" 5~ 

We will use as dynamics the Metropolis algorithm, in which the typi- 
cal time needed to overcome an energy barrier AH is of order exp (flAH). 
It will be defined in detail in the next section. 

We are interested in the case in which 2 and h are very small but fixed, 
the volume is large and fixed, and T is very small; namely, we move in 
the vicinity of the triple point h = 2 = T = 0. In particular we will consider 
the region h > 2 > 0, where the most interesting phenomena take place. The 
stable equilibrium, namely the absolute minimum of the energy, in this case 
is +1  and we suppose to start with the system in the configuration -_1. 
We want to describe the first excursion between - 1  and + 1. It turns out 
that in the above region a direct interface between pluses and minuses is 
unstable and its appearance and resistance are very unlikely. 

The main effect which surprisingly and unexpectedly shows up is that 
two different mechanisms of transition between - 1  and + 1 take place for 
different values of the parameters 2, h. More precisely, for 0 < 22 < h  the 
transition takes place via the formation of a suitable critical droplet of 
zeros that keeps growing until it covers the whole volume. Subsequently, 
from the intermediate zero phase we have the nucleation of a critical 
droplet of plus spins driving eventually the system to the stable + _1 phase. 

Conversely, for 0 < 2 < h < 22, the plus phase is created directly from 
the minus phase via the formation of a suitable critical nucleus, a sort of 
"picture frame" (see Fig. 10), containing in its bulk the plus spins with a 
thin layer of zeros separating the interior pluses from the sea of minuses. 
We want to stress that the line h = 22, where this abrupt variation of the 
mechanism of nucleation takes place, has no meaning from the "static" 
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point of view of the Gibbs states. The reason is that we are analyzing a 
region of the configuration space very unlikely at the equilibrium; but, on 
the other hand, this region and the form of the "energy landscape" on it 
play important roles in the relaxation from metastability. 

A first result that we obtain in the present paper refers to the com- 
putation of the asymptotic behavior for small temperatures, of the transi- 
tion time (the lifetime of the metastable state). Then we pass to the 
characterization of typical trajectories during the transition; we specify the 
geometrical sequence of droplets as well as the order of magnitude of 
the necessary time fluctuations during the growth of the critical nucleus 
both for h < 22 and for h > 22. To do this we exploit some general results 
contained in ref. 15. The model-dependent part of the work consists in the 
solution of a well-specified sequence of variational problems. The main 
difficulty is the determination of the "minimal global saddle" between - 1  
and + ! and of the set if, the generalized basin of attraction of - 1 .  From 
this we will single out an optimal nucleation mechanism. We will analyze 
the energy landscape precisely to exclude all the other possible mechanisms 
of transition. In particular we will show that any form of coalescence will 
be reduced in probability with respect to the optimal nucleation mechanism. 

The paper is organized in the following way: Section 2 contains defini- 
tions and results. In particular we state Theorem 1 concerning the 
asymptotics of the escape time. In Section 3 we describe the local minima 
of the energy. In Section 4 we discuss supercriticality or subcriticality of 
droplets, namely we determine their tendency to grow or shrink. In Sec- 
tion 5 we prove a basic result on the height of different global saddles. In 
Section 6 we define the set ff and find the minima of the energy in its 
boundary 0aJ. In Section 7 we describe the typical tube of trajectories during 
the first excursion; then, using as preliminary results the propositions con- 
tained in the previous section, we conclude the proof of Theorem 1; finally 
we state and prove Theorem 2, which refers to the typical tube. Section 8 
contains the conclusions. An appendix contains an explicit proof of a useful 
result about recurrence properties of a general class of Markov chains. 

2. D E F I N I T I O N S  A N D  R E S U L T S  

We start by describing the model that we want to study. The con- 
figuration space is 

DA = { -- 1, 0, + 1} A (2.1) 

where A --AL is a two-dimensional torus (a square with periodic boundary 
conditions) of side L. 
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A configuration a is a function 

o-: A--* { -- 1, O, +1} 

The energy associated to the configuration a is given by 

H(a)=J ~ (cr-,-cr: ')2-2 E a~.-h Z ~-,- (2.2) 
( x , y > ~ A  x e A  x e A  

where (x ,  y )  denotes a generic pair of nearest neighbor sites in A and we 
suppose 0 < 2 < h < J. We also introduce the restriction 

2J  
2 < 2 a 2 + a -  1 

where a :=h/2,  the meaning of this condition will be clear later on [see 
(3.17)]. 

The Gibbs measure in the torus A is given by 

e x p ( - f i l l ( a ) )  
(2.3) l t,l -- ZA 

where fl represents the inverse temperature and ZA is the normalization 
factor, called the partition function. 

We describe now the structure of the ground states corresponding to 
the different values of our parameters 2 and h. 

Let - - ! ,  0_, and + 1 denote the configurations with all the spins in A 
equal to - l, 0, + 1, respectively. We have: 

for 2 = h = 0 the ground state is three times degenerate, 
the configurations minimizing the energy are 
- ! ,  0 and + !  

for h > 0 and h > - 2  the ground state is + ! 

for h < 0 and h < 2 the ground state is - l 

for 2 < 0 and 2 < h < - 2  the ground state is 0 

For  h = 0 ,  2 > 0 :  + l ,  - !  coexist. For  h = , t < 0 :  - 1 ,  0 coexist. For h = 
- 2  > 0: + 1, 0 coexist. These results are summarized in Fig. I, where the 
coexistence lines are shown. 

We now introduce a dynamics in our model. It will be a discrete-time 
Glauber dynamics, namely a Markov chain with state space given by s 
with the following properties: 
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I 

N , + 

o - 0-- - -N~ ~ 

/ 
Fig. I. Ground states for the Blume-Capel model. 

1. The allowed transitions are between nearest neighbor colfigura- 
tions, namely pairs ~ and ~l of configurations differing only in one spin: 

= q.,-, b, with 

tl"'b(Y):={: (y) forVYeA'y~Xy=x (2.4) 

w i t h b e { - 1 , 0 ,  + I } .  

2. It is reversible w.r.t, the Gibbs measure ltA for the Blume-Capel 
model; namely the transition probabilities P(a, a') of the chain satisfy 

laA(a) P(a, a') =/tA(a') P(a', or) (2.5) 

Our choice is the so-called Metropolis algorithm, where the transition 
probabilities, for pairs of different configurations a, t/, are defined as 

P(a, ~l) := I 
e-B[HI,D- Hta)] + a, q nearest neighbors 

otherwise 

(2.6) 

where 

a+ :={; if a~>O 
Va~R (2.7) 

if a < 0  

The space'of trajectories of the process is 

S : = ( O A )  N 

An element in Z is denoted by co; it is a function 

CO: N --* [2 A 

We often write cO=ao, gl,..., a,, .... 
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We will call path an allowed trajectory, namely: ao, a,  ..... a,  .... is a 
path iff aj and a j+ l  gj are connected in the sense that  aj+l = a]" b for some 
x e A and b e { - l, 0, + 1 }. We use the nota t ion co: a --, q to denote a path 
co joining a to 11. 

A path co = ao, al  ..... a,, is called downhill (uphill) iff H(aj+ l) <~ H(aj) 
[H(aj+l)>>,H(aj)] Vj=0 ,  1 ..... n - 1 .  We will use the convent ion that a 
downhill  path can (and will) end only in a local minimum. 

A set Q of  configurations, Q c s A, is said to be connected iff for every 
pair of  configurations a, r/e Q, 3 a path co: a ~ II such that co c Q. 

We say that  a configurat ion a is downhill connected to q iff there exists 
a downhill  path co: a ~ i/. 

We will denote by M the set of  all the locally stable configurations, 
namely the set of  all the local minima of  the energy. More  precisely: a e M 
iff for every x eA,  b e { - l , 0 ,  + 1} the corresponding increment in 
energy, given by 

d,.. b H(a) : =  H(a"" b) _ H(a) (2.8) 

is positive. 
It is easy to see that in our  model  with the choice of  the parameters  

J, h, 2 that we have made, the quant i ty  A,. b H(a )  will be always nonzero  
and this somehow simplifies some arguments.  

Given Q c f 2  A we define the (outer)  boundary  OQ of  Q as the set 

OQ:= {ar Q: 3a' e Q: P(a', a)>O} 

namely 

O Q : = { a C Q : 3 x e A ,  b e { - l , O ,  + l } s u c h t h a t a ' = a ' b e Q }  (2.9) 

We denote by U =  U(Q) the set of  all the minima of  the energy on the 
boundary  OQ of Q: 

U(Q) :=  {r e aQ: min H(a )  = H(~)} 
,7~OQ 

(2.10) 

and we define H(U(Q)):= H(r with ~ e  U(Q). 
W e  denote by F =  F(Q)  the set of  all minima of  the energy on Q: 

F(Q) :=  {ff e Q: min H(a) = H(~)} (2.11) 
o'EQ 

Given a stable state a e M, i.e., a local min imum for the energy, we define 
the following basins for a: 
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(i) The wide bas& of attraction of a: 

/~(a) := {if: 3 downhill path co: r ~ a} (2.12) 

(ii) The basin of  attraction of a given by 

B(a) := {~: every downhill path starting from ~" ends in a} (2.13) 

B(a) can be seen as the usual basin of attraction of a with respect to the 
fl = oo dynamics. 

(iii) /~(a) = the strict basin of  attraction of a given by 

/~(a) := {r ~ B(a): H(r < H( U(B(a)))} (2.14) 

We introduce now the useful notion of cycle. A connected set A which 
satisfies 

max H(a)  =/ -7< min H(~) = H(U(A)) 
creA ~" e tqA 

is called a cycle. Notice that every local minimum for the energy is a 
(trivial) cycle. 

The following simple properties of cycles are true. Their proof is 
immediate (see, for instance, ref. 15). 

�9 Given a state 6 e 12,1 and a real number c, the set of all a's connected 
to 6 by paths with energy always below c either coincides wi th /2  A 
or it is a cycle A with 

H(U(A))>~c 

�9 Given two cycles A~, A,_, either (i) A~ c~A,_=~  or (ii) A~ cA_, or, 
vice versa, A z = A~. 

We give now some more definitions: a cycle A for which there exists 
~*~ U(A) downhill connected to some point a in A" is called transient; 
given a transient cycle A the points p?* downhill connected to A c are called 
mhTimal saddles. The set of all the minimal saddles of a transient cycle A 
is denoted by St(A). 

A transieflt cycle A such that 36 r  with H ( # ) < H ( F ( A ) ) ,  and there 
exist II*~St(A) and a path co :q*~6  a below Jl* [namely Va~co: 
H(a) < H(q*)]  is called metastable. 

For each pair of states a, ~lef2 A we define their minimal saddle 
St(x, y) as the set of states corresponding to the solution of the following 
minimax problem: let, for any path co, 

f l(co):=maxH(~). /7~ . , :=  min /~(co) 
(, E o )  O~: a ~ t 1 
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Find 

~(~, ~):= {~:/-/(~) =/-7~.,,; 3~o: a ~  ~, o ~  ~, ~ (~o )= /7~ ,  ~} 

One immediately verifies that a strict basin of attraction of a local mini- 
mum is a transient cycle. This case corresponds to a "one-well" structure. 
More general cases involve the presence of "internal saddles" and corre- 
spond to a "several wells" situation. 

Given any set of configurations A c s we use rA to denote the first 
hitting time to A: 

rA :=inf{t  >_- 0: a, eA} (2.15) 

We use P,I(.) to denote the probability distribution over the process 
starting at t = 0 from the configuration q. 

We are interested in dynamics at very low temperatures. Namely, we 
will discuss the asymptotic behavior, in the limit fl ~ 09, of typical paths of 
the first escape from - 1  to + 1 for fixed h, 2, and A. 

Let us now better clarify the asymptotic regime in which we will 
operate: the volume IA[, the magnetic field h, and the chemical potential A 
are fixed and we consider asymptotic estimates for fl very large. This 
regime was studied in the case of the standard Ising model in 2D by Neves 
and Schonmann, (~3) where the point of view of the pathwise approach to 
metastability, introduced in ref. 4, was assumed. 

One can, for instance, take 2 very small, h = a2, a fixed positive number, 
IAI of order, say, 1/h 2, and/~ of order 1/h~; physically this corresponds to a 
regime in which, at the equilibrium, the energy dominates w.r.t, the entropy. 

In the above-described situation the qualitative behavior of our 
stochastic time evolution can be described as follows: the system will spend 
the majority of the time in the local minima of the energy. Sometimes it 
escapes from them, but there is always a natural tendency to follow a 
downhill path and an occasional, random and rather unprobable, uphill 
move. 

An important role will be played by the saddles separating different 
"basins of attraction" (or generalized basins of attraction, see below) w.r.t. 
the fl = oo dynamics. 

We will see that the local minima will correspond to particular 
geometric shapes that will be called plurh'ectangles (see Fig. 9); we will 
analyze, in particular, the special saddles between "contiguous" local 
minima (see Lemma 5.1 ). 

A global saddle point is any configuration 

~ ( - 1 ,  + 1 ) = : . ~  
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In Section 6 we will see that the set of these global minima ~ are substan- 
tially different according to the values of the parameters 2 and h. 

1. For  h <22  we distinguish two cases: 

(a) If ~ : = l * - ( 2 J - ( h - 2 ) ) / h < ( h + 2 ) / 2 h , . ~  is of the form ~ .~  
given in Fig. 32 [-the two critical lengths l* and M* are defined in (3.12) 
and (3.15)]; namely it contains a "droplet" with external rectangle given by 
a square of side l* + 2; the internal shape is given by a rectangle with sides 
l*, l * - 1 ,  at a distance one from the external rectangle and with a unit- 
square protuberance attached to the longest "free" side; the internal shape 
is full of pluses; and the spins lying outside the exterior rectangle are 
minuses; finally, between the interior shape and the external rectangle there 
are zeros. 

(b) I f~>(h+2) /2h ,~  is of the form ~ . b  depicted in Fig. 32. Now 
~ . b  is similar to ~l .... but now the external rectangle has sides / * + I ,  
l* + 2 and internally we have a square with sides l* - 1 with a unit-square 
protuberance attached to the shortest "free" side. 

2. For  h > 22, ~ is of the form ~ given in Fig. 32; namely it is given 
by a rectangle of sides M* and M * - 1 ,  with a unit-square protuberance 
attached to one of its longest sides, full of zeros in a "sea" of minuses. 

We set 

F : =  H ( ~ )  -- H( -- 1) (2.16) 

Let us now summarize our main results. 
We shall prove that the first excursion from - 1  to + 1 typically passes 

through a configuration from .~ and the time needed for this to happen is 
of the order exp(flF); this is the content of Theorem 1 that we are now 
going to state. 

Theorem 2 will characterize the typical trajectories of the first excur- 
sion. The proof of Theorems 1 and 2 and even the statement of Theorem 2 
will need many more definitions and propositions. For  this reasons they will 
be postponed to Section 7. 

Theorem 1 is based, in particular, on Propositions 4.1-4.3 given in 
Section 4. These propositions refer to the tendency of a given minimum ,~ 
of the energy to evolve toward + 1 or to - 1 ,  namely they establish under 
which conditions a droplet is supercritical or not. 

It will be crucial to introduce a sort of generalized basin of attraction 
of - 1 .  Indeed we will reduce the proof of Theorem 1 to finding a certain 
set ~ of configurations satisfying suitable properties. In order to explicitly 
construct this set f#, we will need the results contained in Propositions 
4.1-4.3. This construction will be achieved in Section 6. 
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T+I; 

Let 

For  every e > 0 :  (i) 

and (ii) 
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Let f -1  be the last instant in which a, = - I  before 

f - i  :=max  {t < r + ! "  a , =  - ! }  (2.17) 

f.e, :=min  { t > f _ j :  a ,= . r  ~} (2.18) 

lim P_ l ( f . e  < r + ! ) =  1 (2.19) 

lim P _ l ( e x p [ f l ( F - e ) ]  < r + !  < e x p [ f l ( F + e ) ] ) =  1 (2.20) 
t q ~  o*J 

3. LOCAL M I N I M A  OF THE HAMILTONIAN H(cr) 

In this section we want to analyze the geometrical structure of the 
local minima of the energy. 

For  any configuration a~g2 A we denote by c+(cr), c - ( a ) ,  and c~ 
the union of all closed unit squares centered at sites x e A with cr(x) respec- 
tively equal to + 1, - 1 and 0. The c+(a), c - ( a ) ,  and c~ decompose into 
maximal connected components c f "  o . -  , j =  1 ..... k +'~ - 

The centers of c f "  0, - form a ,-cluster in the sense of site percolation, 
namely they are maximally connected components in the sense of the next 
nearest neighbors. The c f '  o . -  will be simply called clusters. 

To any such c f"  o.-  we assign its rectangular envelope defined as the 
minimal closed rectangle R(c f  "~ containing it; if none of the rectangles 
R(cf"  o) is winding around the torus, we call the corresponding configura- 
tion acceptable. 

Let ~ be an acceptable configuration; we denote by y f "  o the boundary 
of c f ' ~  {1 ..... k+'~ the internal component ~+.o of the boundary is 
defined as follows: let s be a unit segment of the dual lattice Z z + ( I/2, 1/2) 
belonging to 7 f ' ~  we say that s ~ f  '~ if and only if all the paths joining 
nearest neighbor sites of A and starting from the site adjacent to s and not 
in c +" o, necessarily reach a site in c f  "~ before touching the cluster c 7 
winding around the torus. The external component '2f' o of the boundary 
of c +" ~ defined as 7f" o\,~+, o. Of course );f,0 can be empty. 

In order to construct the local minima of the Hamiltonian we first 
prove that direct + -  interfaces cannot exist in such configurations; in 
Fig. 2 we analyze the interaction of a minus spin with its neighboring sites. 
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~ {0 -6J-(h-A) ~ {0 -8J-(h-A) 
+ - 0  + - 0  

o + - 4 J - 2 h  + + -8.1-2h 

o {0  -4J-(h-A) o_ {0 -lOJ-(h-A) 
§ - 0 - 3 J - 2 h  + . + + - 1 2 J - 2 h  

~ {O -6J-(h-A) ~ { 0 - 2 J - ( h - A )  
+ - + - 4 J - 2 h  + -  - + + 4 J - 2 h  

* {0 -12J-(h-,\) + {0 -8J-(h-A) 
+ - §  + - +  

§ -16J-2h + - 8 J - 2 h  

§ { 0  - 4 J - ( h - , \ )  {0 -(h-A) 
+ - - -2h + - - + +8J-2h 

Fig. 2. 

We examine all the possible cases and we show that it is always possible 
to construct a lower energy configuration by changing the minus spin 
adjacent to the interface. 

Let a be an acceptable configuration such that there exists only one 
cluster of 0 spins c o and no plus spins; it can be proved that 

~:~ ~-yo = po is a rectangle whose 
a is a local minimum of H(a )  (sides are longer than two (3.1) 

Indeed, if a is a local minimum and there exists a minus spin inside the 
cluster c ~ then, as a consequence of the fact that c o does not wind around 
the torus, one has that necessarily there must exist at least one minus spin 
with at least two nearest neighbor sites occupied by 0 spins (see Fig. 3). 
This minus spin can be changed into + or 0 by obtaining, in this way, a 
lower energy configuration, as shown in Fig. 4; this is absurd. 

We can conclude that no minus spins can be inside c o , that is, 
~o = { ~ } .  In a similar way it can be proved that p0 is a rectangle and its 
sides are longer than two. 

The proof  of the implication ~ is in Fig. 5 where it is shown that all 
the possible nearest neighbor configurations of a are at higher energy; in 
Fig. 5 the modified spin is represented by a unit empty square. 

. . . .  - I o l  
Fig. 3. 
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o { 0  - 4 J - ( h - . ~ )  ~ { 0  - ( h - . ~ )  
o - o - - + + 8 J - 2 h  o + - 2 h  + o 

o { 0 - 2 J - ( h - ~ )  
- - 0 

o + + 4 J - 2 h  

Fig. 4. 

N o w  let a be an acceptable  conf igurat ion such that the fo l lowing con-  
ditions are satisfied: there exists just one  cluster c o of  0 spins touching  c - ,  
9 ~ is a rectangle, no  minus  spin is inside clusters o f  0 spins; all plus spins 
are in the cluster c § and 9 + = ~,-o (see Fig. 6). With arguments  similar to the 
ones  used before, it can be proved that 

a is a local  m i n i m u m  o f H ( a )  r ~'Y+ = 9+ is a rectangle w h o s e  
/.sides are longer than two  (3.2) 

- { o  
[ ]  + 1 6 J - 2 h  

0 + 2 J - ( h - ~ )  
+ + 1 2 J - 2 h  

1 - +(h-;9 
+ +8J-(h + ,\) 

- + 2 J + ( h - A )  
+ +6J- (h  + ~) 

[ ]  
- + 4 J +  (h-,~) 
+ + 4 J - ( h +  A) 

Fig. 5. 
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o 

/ 

-1 
Fig. 6. 

In the proof  it is crucial that the energy of a configuration can be lowered 
by properly changing a 0 spin having at most two zero spins and no minus 
spins among its nearest neighbor sites; all the possible situations are shown 
in Fig. 7. 

Hence we have proved that configurations like the one in Fig. 8 are 
local minima of H(a); these configurations are called birectangles and are 
denoted by the symbol R(L1, L2; M1, M,_), where 

{ MI>>.LI+2, M,_>~L,_+2 if L1,L2>_.2 
(3.3) 

MI,M2>~2 if L1 = L 2 = 0  

It is easy to understand that the most general local minimum of H(a) 
is not a birectangle, but, rather, a more complicated configuration that we 
call family of plurirectangles (see Fig. 9). It is an acceptable configuration 
satisfying the following conditions: 

(i) There are k ~ clusters c o ..... c o of 0 spin touching c - .  ko 
(ii) 9 ~ ..... 9~ are noninteracting rectangles whose sides are longer 

than two. 

(iii) In every cluster c ~ there are kff clusters c~- c,.++ of + 1 spins. ~'"~ k j  

(iv) t/j e {1 ..... k~ ~2,+~ ..... ~j+~f are noninteracting rectangles whose 
sides are longer than two. 

* { -  8 J + ( h - , k )  + { +  lOJ+(h- ,k )  
0 0 +  0 0 +  

o + - (h  + ,\) + - 2 J - ( h  + ,\) 

+ + 0 + - 4 J - ( h ,  + ,\) 

Fig. 7. 
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L1 

L2 

ml 

Fig. 8. 

We have a single plurirectangle when k ~  I. 
We have used above the geometric notion of interacting rectangles: 

given two rectangles R~ and R2 with boundaries on the dual lattice 
Z2+(1 /2 ,  1/2), we say that they interact if and only if one of the two 
following conditions occurs: 

(i) 
(ii) 

Their boundaries intersect. 
There exists a unit square centered at some lattice site such that 
two of its edges are opposite and lie respectively on the bound- 
aries of R~ and R2- 

We have to compute the energy of such local minima as a first step in 
the description of the tendency to shrink or grow of the stable clusters. 

We say that a local minimum a is subcritical if and only if 

lim P~(r 1 ~ ' + 1 )  = 1 (3.4) 

Fig. 9. 
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One of the main problems that we have to solve is to understand when a 
local minimum is subcritical. 

The energy of a birectangle R(L,, L,_; M~, M,_)) is 

H( R( L~ , Lz; M l , Mz) ) -- H( - 1 )  

=(2MI  +2M2)  J + ( 2 L 1  +2L2) J - M i M z ( h - 2 )  -LIL2(h+2)  (3.5) 

The above formula can be easily generalized to the case of a general 
plurirectangle a, characterized by the parameters M~.i, M2. j, L~.j.~, and 
L2.j.~ Vj~ {1,...,k ~ and Vie {1 ..... kfl}, with obvious meaning of the 
notation. One has 

k 0 

H(a)- -H(-1)  = ~ {(2MI.j+ 2M2. j) J--M1.jM2.j(h-2) 
j = l  

+ Y~ [(2Ll.zi+2L2.j.i)J-L~,j, iL2.j,~(h+~)]} 
i = l  

(3.6) 

Now we consider a squared birectangle Q(L, M) := R(L, L; M, M), 
whose energy e(M, L):=H(Q(L, M ) ) - H ( - I )  is given by 

e(M, L) = 4M J+ 4L J-- M2(h - 2) - L2(h + 2) (3.7) 

The graph of this function e: R 2 --, R is a paraboloid with elliptical section 
and downhill concavity; the coordinates of the vertex are 

2J  2J 
M =  L --- (3.8) 

h - 2 '  h + 2  

Let us consider a droplet Q(M, L) such that M<2J / (h -2 )  and 
L<2J/(h+2): if these conditions are satisfied, e(M, L) is an increasing 
function of M and L, so we expect that this droplet will shrink. On the 
other hand, if M > 2J/(h-  2), since e(M, L) is a decreasing function of M, 
we expect that the external cluster of the droplet will grow; this suggests 
that M* := [2J/(h- 2)] + 1 is the critical dimension for the external cluster 
of a local minimum. After the growth of the external cluster, we look at 
what will happen to the internal one; with similar arguments one can con- 
vince oneself that L* :=[2J/(h+2)] +1 appears to play the role of the 
critical dimension. Obviously these two processes of growth cannot be 
inverted; in fact, a plus spin droplet can "live" only inside a zero spin 
droplet. 
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IO1 IOI 
/ 1 + 2  

Fig. 10. 

12 + 2  

But it can also happen that the plus spin phase is reached directly, 
without passing through the zero spin phase; this happens if the droplet 
Q(M, L) grows moving along the line M - - L  + 2. In this case one can see 
that the system reaches the stable phase through a sequence of frames 
(picture frames). We call a squared frame a birectangle C(l,l):= 
R(l, l; l + 2, l +  2) with l >~ 2. The most general frame is a rectangular one 
(see Fig. 10): 

C(ll, 12) := R(lt, 12; Ii + 2, 12 + 2) (3.9) 

where Ii, 12/> 2. 
Now we consider the energy of a squared frame e(l):= 

H(C(I, l ) ) - H ( - 1 ) ;  using equality (3.7), we have 

e(l) = - 2 h / 2  + l[8J-4(h - 2 ) ]  + [ 8 J -  4(h - 2 ) ]  (3.10) 

The graph of this function is a concave parabola, whose vertex coordinate is 

2 J -  (h -- 2) 
1 h (3.11) 

We expect that C(I, l) will grow if l>_- l*, where 

/* := h �9 + 1 (3.12) 

Otherwise it will shrink; hence l* should be the critical dimension of a 
squared frame. 

In order to describe the behavior of a general birectangle R =  
R(L~,L2;M~,M2), we must study the growth and contraction 
mechanisms of a droplet; as in the Ising model, these are mainly growth of 
a (unit square) protuberance and corner erosion. But in the Blume-Capel 
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[_ 

I 

4 I 
I a 

I 

I 

L 

2 
2 

Fig.  11. 

model the relevant local minima have two components, internal and exter- 
nal ones, and they can grow or shrink independently. The mechanisms of 
growth and contraction are explained in Fig. 11, and correspond to: 

1. Creation of a + protuberance adjacent from the exterior to the 
internal rectangle. 

2. Creation of a 0 protuberance adjacent from the exterior to the 
external rectangle. 

3. Erosion ( +  --+ 0) of all but one + spin in a row or column of the 
internal rectangle. 

4. Erosion (0 --+ - ) of all but one 0 spin in a row or column of the 
external rectangle. 

Their typical times are 

t t = e  fl[2J-th+2l], t ~ _ = e f l [ 2 J - ( h - ~ ) ]  

t 3  = e p (  i, + a )( L - 1 ), t 4  = e p (  h - 2) (M--  I ) 
(3.13) 

where L :=min  {L,,  L2} and M : = m i n  {M,,  M2}. 
By comparing times t,,..., t4, we observe that the growth of an internal 

protuberance is always faster than the growth of an external one, indeed 

2 J - ( h  + 2) < 2 J - ( h -  2)=,t~ <t,_ (3.14) 

Then we introduce the following critical dimensions: 

[ 2J] =r2s+2 ] 
L*:=  +1, r.. L 

M * : =  ~ +1,  -M' L h - 2  j + l  

(3.15) 

822/83/3-4-14 
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with the following meaning: 

�9 L < L* ~,  (h + ;t)(L - 1 ) < 2 J -  (h + 2): internal contraction is faster 
than growth, that is, the internal component of the local minimum 
is (relatively) subcritical. 

�9 L < L ~ (h + ;t)(L - 1 ) < 2 J -  (h - 2): internal contraction is faster 
than external growth. 

�9 M < M r  ( h -  2 ) ( M -  1) < 2 J -  (h + 2): external contraction is 
faster than internal growth. 

�9 M <  M *  r  (h - 2 ) ( M -  1) < 2 J -  ( h -  2): external contraction is 
faster than growth, that is, the external component of the local mini- 
mum is (relatively) subcritical. 

As we will see in the next section, another interesting length will be 
lo:= [h/2] + 1. 

We choose the parameters J, h, and 2 in such a way that 2J/(h + 2), 
( 2 J +  22)/(h + 2), 2J/(h - 2), ( 2 J -  22)/(h - 2), ( 2 J -  (h - 2))/h, and hi2 are 
not integer, so that ambiguous situation here and in the following, are 
avoided. 

The behavior of our birectangle R depends on its dimensions; some of 
the possible cases are as follows: 

�9 L < L* and M < M*: both internal and external component are sub- 
critical; R is subcritical. 

�9 L < L *  and M >  M*: the internal component is subcritical but not 
the external one, R is supercritical and the system starting from R 
will reach _0. 

�9 L > L *  and M > M * :  both internal and external components are 
supercritical; R is supercritical and the system starting from R will 
reach + 1 by passing through C ( M j  - 2 ,  M 2 -  2) (internal growth is 
faster than external growth). 

�9 L > L* and M < M*: the internal component is supercritical, while 
the external one is subcritical; the future of the system starting from 
R depends on the relation M ~/~t. 

Many different situations can take place; the last one is surely the 
most difficult, but also the most interesting that we have to examine. 

Growth and contraction of a frame are based on the same elementary 
mechanisms described before, but they take place in more than one step. 
The possible contraction of a squared frame C(I, l) starts with the contrac- 
tion of its internal component: our system typically first reaches the 



Metastability and Nucleation for Blume-Capel Model 493 

-..} 
7 

--+ 

C(l, l) S(l, l) R(l, l) 

Fig. 12. 

configuration S(I, 1), increasing the energy of the quantity H ( S ( I , I ) ) -  
H(C(I, l)) =(h  + 2 ) ( 1 -  1), and then the configuration R(/, I) : = R ( I -  1, 1; 
1 + 2 , / + 2 ) ,  lowering the energy of the quantity H(S(I, I ) ) -H(R( I ,  l ) ) =  
2 J -  (h + 2) (see Fig. 12). 

At this level it is not easy to describe the future evolution of the 
system: the internal component could continue to shrink or the external 
component could start its contraction; but we remark that the first step in 
the contraction of C(I, l) always involves bypassing of an energetic barrier 
whose height is (h + 2 ) ( / -  1 ). 

On the other hand, the possible expansion of C(I, l) starts with the 
growth of an external protuberance: the system typically reaches the con- 
figuration G(I,I) by overcoming the energetic barrier H(G( I , I ) ) -  
H(C(I, 1 ) ) = 2 J - ( h - 2 )  and then it goes down to R(I+ 1, l) := R(I, l; l + 3 ,  
l + 2 )  lowering the energy of the quantity H ( G ( I , I ) ) - H ( R ( I + I , I ) ) =  
( h - 2 ) ( 1 +  1) (see Fig. 13). We have supposed, without loss of generality, 
that the growth is horizontal. 

As a consequence of the fact that one always has t~ < t 2, the second 
step in the expansion of the droplet will be the growth of an internal 
protuberance: the system reaches the configuration S(I+ 1, l) by over- 
coming the energetic barrier H(S(I+ 1, l)) - H(R(I+ I, l)) = 2 J -  (h + 2) 
and then goes down to the frame C(I+ 1, l), lowering the energy of the 
quantity H(S(I+ 1, 1)) - H(C(I + 1, l)) = (h + 2 ) (1 -  1). 

t _> 
c'(l, l) G(t, t) R(t + ~, t) 

Fig. 13. 
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In order to describe the future probable evolution of the system 
starting from C(l, l), and establish its tendency to shrink or grow, we have 
to distinguish the following four cases: 

l< s ~ H(S(I, 1)) < H(G(I, I)) 

~H(G(I, l)) < H(S(I, 1)) 
L , < I <  l* ~ {H(S(I, I)) < H(S(I + I, I)) 

~ [ H ( G ( I , I ) ) < H ( S ( I + I , I ) )  
1" < l, l+ z < M ~  IH(S(I  + 1, 1)) < H(S(I, 1)) 

(H(G(I,  l)) < H(S(I, 1)) 
I 

l* < I, if/l< l+ 2 ~ ~H( S ( l+  1, l ) ) -  H(R(l  + 1, l)) 
! 

L <H(G(I, l ) ) - H ( R ( l +  1, l)) 

These four cases are illustrated in Fig. 14. 

l < L  L < / < / *  

C(U) / / 

C(U) 

I * < I , l + 2 < M  

Fig. 14. 

l * < l , M < l + 2  
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The analysis of the growth and contraction mechanisms leads to the 
conclusion that l* is the critical dimension of a square frame. 

We close this section by remarking that the parameter 2 may be 
chosen sufficiently small, that is, 

2J 
2 < 2a 2 + a - l  (3.16) 

where a = b/2, so that the following inequalities are satisfied: 

L * + I ~ < I *  

L* ~<L<I* < l *  +3  <.M<~M* 

(3.17a) 

(3.17b) 

4. SUPERCRITICALITY AND SUBCRITICALITY OF 
LOCAL M I N I M A  

In this section we want to prove rigorous results about supercriticality 
and subcriticality of local minima. Namely, we want to give criteria to 
establish the natural tendency of the geometrical structures representing the 
minima for H to shrink or grow. We will first analyze the "frames," then 
the generic birectangles, and finally the plurirectangles. 

First we state the following proposition: 

Proposition 4.1. Let us consider the configuration C(l],/2); we set 
/ :=min{/~,/2} and m :=max{l] , /2}.  Let e > 0 ;  we have 

I lim r+!) = I f l~  ~'. Pc(I=,I2] (T- I -  < 
/<1"  and re<m*(1) 

(/lim~ - Pc,,,,,,_,( T": < r  ]<  T"~_(~))-- 1 

where 

and 

E 2h 2 J - ( h - 2 )  h + 2 / J  +1 
m*(/) := h - ~  h h - ~  
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Moreover. 

I l i m  eca,  j,.,(r +_t < r -  !) = 1 

E ~< l <  l* and m >~ m*(l) ~ ~ lim Poit.hltTg'lte ~,-_,, T~)(e))  1 < 2-+1 < 
k P -  ~-, 

where 

fe 
fl{[2J--th--2)] -(h-).)(m+ 1)+ [2J - - (h  +2) ]}  _+fl~ 

T~'(e)  := [ep[Z:_lh_~ ] +pc 

Finally 

r e < M - 2  

m ~ > / ~ - 2  

( lim Pcr < r _ l ) =  1 

Pc.,.l:~( T '2 (e) < r+!  < T~2(e)) = 1 

where 

. _ S e  fl{[2J-(h-)')]-(h-2)(m+l)+[2d-(h+;')]}+-Ile l , m < / ~ - 2  

T~2(e) " -  ~ e/J[ 2J -(h - ;,)3 _+/J~ otherwise 

Proof. Let us consider the frame C : = C ( I  l,l~_) with 1:= 
min {ll, 12} < L ,  its basin of attraction B :=B(C(l l ,  12)), and the relative 
boundary 0B. Let us denote by $1 e OB the set of configurations obtained 
by changing into zero l -  1 plus spins adjacent to one of the shortest sides 
of the internal rectangle of C (see Fig. 15); we claim that 

min H ( a ) =  H(S1) (4.1) 
tr E t~B 

R e m a r k .  In the following we will consider: 

1. Configurations a containing a unique droplet ? with a given par- 
ticular shape, size, and location; for example, a rectangle of zeros (with 
given location and horizontal and vertical sizes) or a birectangle with given 
location and external and internal horizontal and vertical sizes. 

/+2  

m+2  

Fig. 15. 

Sl 
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2. The equivalence class of all the configurations a' with a unique 
droplet ),' obtained from y by symmetries such as rotations, translations, 
inversions w.r.t lattice axes, and even displacements along sides of unit- 
square protuberances. 

In the following, to avoid lengthy specification and to accelerate the 
exposition, we often interchange the above two objects and we even use the 
same symbols to denote them. The reader will easily deduce the meaning 
of our statements from the context. 

For example, sometimes we will denote by $1 also a particular droplet 
obtained from a particular configuration in C by substituting one par- 
ticular smaller internal side with a particular unit-square protuberance. 

[ ]  f + AHt~ = 16,1-2h 

L 0 AHI2 = 4 J - ( h - A )  

t + AH21 = 1 2 J - 2 h  
0 AH22 = 2 J - ( h - A )  

+ AH31 = 8 d - ( h  + A )  

- AH32 = (h -A)  

+ AH,u = 4 d - ( h  + A) 
- AH42 = 4 J  + (,h-A) 

0 AHsl  = + ( h +  A) 
- AHs2 = 8 J + 2 h  

[] 

Fig. 16. 

0 A H 6 ~ = 2 J + ( h + A )  
- AH62 12J  + 2 h  

{ 0 AHT~ =4J+(h+A) 
AHz2 16J + 2h 
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f + AH81 = 6J-(h + A) 
/ - AHs2 = 2J+ (h-A) 

Fig. 17. 

Let us now continue the proof of Proposition 4.1. 
In order to prove (4.1), we observe that, starting from C and con- 

sidering all the possible uphill paths, one is able to examine all the 
configurations in OB. The energy costs of all the possible first steps of the 
above-mentioned paths are given in Fig. 16; here we mark by a unitary 
square the site whose spin is changed and we denote by a pair of positive 
integer numbers (i,j) the generic first step of our uphill path. We denote by 
Ci.j the configuration reached after the step (i, j). We observe that 
C2, 2 EOB and that AHij>AH22V(i, j)  q~ {(5, 1), (3, 2), (2, 2)}. Hence, all 
the paths whose first step is different from (5, 1) and (3, 2) lead to a 
boundary configuration whose energy is greater than H(C2. 2). 

Starting from C3.2 or C5. l an uphill path can continue by following 
one of the ways shown in Fig. 16 and 17. It can be easily shown that the 
steps (8,j) can be neglected as well. 

In conclusion, only the paths made by steps (3, 2) and (5, 1) can lead 
to a configuration whose energy is lower than H(C2.2). 

Now, let a be an acceptable configuration such that the following con- 
ditions are satisfied: there exists just one cluster c o of 0 spins which touches 
the sea of minuses, namely the cluster c -  winding around the torus; no 
minus spins are inside c~ all plus spins are in a unique cluster c + included 
in c o and )~ § = ~0. If a s B, then the following propositions are true: 

(i) R(c ~  the external rectangle (ll + 2 ) x  (/2 +2 )  of the frame C. 

(ii) R ( c + ) -  the internal rectangle I i x/2 of the frame C. 

(iii) The intersection of each one of the four sides of R(c ~ with )~o 
contains at least a segment of length greater than or equal to 2. 

(iv) The intersection of each one of the four sides of R(c + ) with ,2 + 
contains at least a segment of length greater than or equal to 2. 

We prove (i) by absurdity: let us suppose that R(c ~ is different from 
(ll + 2 ) x  (/2 + 2) and that )~+ is a.rectangle. We can construct a downhill 
path which leads to a local minimum different from C by filling with 0 
spins the region R(c~ +. Thus crCB, and this is absurd. Statement (ii) 
can be proved in a similar way. Statement (iii) is proved by absurdity as 
well: suppose that the intersection between )~o and one of the sides of R(c ~ 
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Fig. 18. 

contains only isolated intervals of length 1; namely, there is a certain 
number of spins 0 with three minus spins among their nearest neighbor 
sites. By changing these 0 spins into - I ,  we construct a configuration at 
a lower energy level and characterized by a cluster of 0 spins c '~ such that 
R(c '~ is different from the rectangle (1 t + 2 ) x  (l 2 +2) ;  then there exists a 
downhill path which connects cr to a local minimum different from C. 
Hence the absurdity a ~ B is obtained. Statement (iv) is proved in a similar 
way. 

But, as we noticed before, all the uphill paths starting from C and 
leading to configurations in aB with energy smaller than H(C=)  necessarily 
can only be made by steps (5, 1) and (3, 2). 

It is clear that, by virtue of the necessary conditions stated above, we 
cannot reach OB starting from C with fewer than 1 -  1 steps (5, 1 ). On the 
other hand, since S~ ~c3B, with more than l -  1 steps (5, 1) we certainly get 
an energy larger that H(S~) and so a configuration which cannot be of 
minimal energy in OB. 

In this way we can only reach configurations with a unique cluster of 
pluses, so any boundary configuration with minimal energy is characterized 
by an external cluster c ~ such that the intersection between 9 ~ and all the 
sides of R(c ~ is at least of length 2, and an internal cluster c § such that 
the intersection between ~+ and one of the sides of R(c § has length 1 (see 
Fig. 18). Among all these configurations it is easily seen that the one with 
lowest energy is S~. 

In conclusion we have to compare H(S~) with H(C2.2). Equality (4.1) 
follows from 1 < L, H(SI ) - H(C) = (h + 2 )( / - 1 ), and H(C22) - H(C) = 
2 J - ( h - 2 ) .  

Now we want to apply to the description of the first escape from B the 
approach developed in ref. 15, which is based on the properties of the 
above-defined sets called cycles. 

It is easy to see that the basin of attraction B := B(C(I~, 12)) defined in 
(2.13) satisfies the following properties: 
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(i) B is connected. 

(ii) $1 =OB, and 

min H(cr)=H(S,), min H(a)>H(SI)  
c~ e OB cr ~_ ~gB\Si  

(iii) V/ ' ]ES I there exists a path co: q--* C such that Vaeco\{q} one 
has a e B  and H(a)<H(S1). 

As was noticed in ref. 15 (see Proposition 3.4 therein), properties 
(i)-(iii) imply that the set B defined as the maximal connected set con- 
taining C and with energy less than H(S,) is a cycle with S~ belonging to 
its boundary 0/~. Moreover, we notice the following obvious properties: 

�9 Any point r/e 0B necessarily is such that H(q)>~ H(S~). 

�9 If H( r / )=H(S~)  and r/COB, necessarily any downhill path starting 
from q ends in C. 

We recall that, given any set A =12 A, we have denoted by ~9~(A) the 
possibly empty subset of U(A) [see (2.10)], which is downhill connected to 
A"; 5e(A) was called the set of minimal saddles of A. We can write 

5e(/~) = S~ (4.2) 

From Proposition 3.7 in ref. 15, from reversibility of the dynamics (see 
Lemma 1 in ref. 9), and from (4.2) we easily get that Va e/~ 

lim P,~(ar,.,,o,~c_ 1 e Sl) = 1 (4.3) 

Since H(S~ ) - H(C) = (h + 2)(1 - 1 ), we deduce that for every e > 0 

lim Pc(e p~h + ~1/- i i-p~ < ra8 < e p~h + J.~t- i I +p~) = 1 (4.4) 

Up to now we have described how the system reaches aB starting from 
C; now we want to describe its further evolution. 

[_ 
] 

[ 

Fig. 19. 
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7 

$2 

Fig. 20. 

17 
Sa 

Two things can happen: the system gets back to B or it goes to the 
birectangle R~ := R(l  I - 1, l; l I + 2, l-F 2) (see Fig. 19); we have supposed, 
without loss of generality, that 1= 12. 

In Appendix A we give a general argument showing that, with high 
probability, our process, possibly after many attempts, sooner or later will 
eventually get out of B u O B  through Sl reaching R~ before touching any 
other local minimum and 

lim Pc('Cgt < "t'+! ) : 1 
P~ ~ (4.5) 

lim PC(ZRj <e  pa'+a)u- 1~+,,)= 1 
f l  ~ or., 

Now we have to describe the further evolution of our Markov chain 
starting from the birectangle R~. We denote by B~ :=B(R~) the basin of 
attraction of R~. Let us first consider the case min{/~-1,  l} = l  (this is 
equivalent to supposing that C is not a squared frame). We denote by S_, 
the configuration obtained by changing into minus l +  1 of the 0 spins on 
the "free" side of the external rectangle and by $3 the configuration 
obtained by changing into zero l -  1 of the plus spins of one of the shortest 
sides of the internal rectangle of R~ (see Fig. 20). The following is true: 

"H(S3) if 1<[~1 +1 
min H ( a ) =  (46) 

~ a o ,  H ( S 2 )  if l~>[~] +1 

Equality (4.6) can be proved with arguments similar to those used in 
the case of the local minimum C(l, ,  12) and observing that H(S2) - -H(R~)  = 
(h - 2)( l+ 1 ) and H(S3) - H(R~) = (h + 2 ) ( / -  1 ) even though, in this case, 
there are other possible first steps (with high increment in energy). They are 
shown in Fig. 21. 

With arguments similar to those used before, we get that the typical 
time of first escape from OBi is of the order of 

exp{fl[ min H ( a ) - H ( R , ) ] }  
o'~OBI 
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t + A H g l  = 6.1-(h + ,\) 
- AH82 = 2 J + ( h - , \ )  

+ ,--kHio i = 2 J - ( h  + ,\) 
- A H l o 2  = 6 , 1 +  ( h - , \ )  

Fig. 21. 

and that the system hits for the first time the boundary OBj in S 3 if 
I < [ h / 2 ] + l  and in $2 if l > > . [ h / 2 ] + l .  Notice that if 1 < h / 2 < 2 ,  the 
integer [h/2] + 1 equals 2, so that $2 is preferred. 

We have that, with probability tending to 1 as f l ~  oz, our droplet 
continues its contraction: the system reaches another local minimum R 2 
strictly contained in R j, that is 

Re -<R I < C  (4.7) 

where we have introduced the following part ial  order re&tion in g2 A" 

a . < q . ~ ( z ( x ) < ~ q ( x )  V x @ A  (4.8) 

We also have that, given e > 0, 

exp{fl[ rain H ( a ) - H ( R I )  ] +fie}  
o'EOBI 

is an upper bound, in the limit fl--, o% to the first hitting time to R_, of the 
Markov chain starting from R~. 

In conclusion, we can say that the Markov chain starting from C visits 
smaller and smaller local minima until it reaches the configuration - 1 ;  
this completes the proof of the statement P c ( r -  ~ < r + ~_) /J ~ '~-, 1. 

Each step of the shrinking process is characterized by a typical time t/~ 
whose asymptotic behavior, exponentially in fl, is known in the sense that 
we control 

lim fl log t/j 
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-q 

l + 2  

We say that 

/ + 2  

Fig. 22. 

t)j, t~ are logarithmically equivalent 

log t~ , _ _ l i m  1 ~,  lira log tls 

By using Markov property, we can say that the typical time of the 
whole shrinking event is given by the largest time among all the partial 
shrinking times. Then the proof of Proposition 4.1 is completed in the case 
l < i, when C is a rectangular frame. 

Next, we consider the case when C is a squared frame: the boundary 
configuration $3 is now the one represented in Fig. 22; H ( S 3 ) - - H ( R ~ ) =  
( h + 2 ) ( 1 - 2 )  and min~E0s, H(a)=H(S3) if l <  [ ~ h / 2 +  �89 + 1. We obtain 
results similar to those obtained in the previous case of a rectangular 
frame. 

Now we consider the frame C : =  C(l~,/2); we suppose that / , < l : =  
min{/,,  I2} < l *  and m :=max{l~, 12} <m*(l) ;  we denote by B the basin 
of attraction of the frame C and by OB its boundary. We denote by $4 the 

~1 .J- 

m + 2 m + '2- 

1+2 

_ _ I - q  

S.a,II l-t-9 

m + 2 
Fig. 23. 

m U 

m + 2 
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R2,• 

777 + 3 

I 
rn+ 3 

m + 2 

l + 2  

R2,11 l+3  

m + 2 

Fig. 24. 

set of configurations obtained by attaching a unit-square protuberance 
(with a zero spin) to one of the four side's of the external rectangle of C 
(see Fig. 23). By considering all the uphill paths starting from C, it can be 
proved that 

min H(tr) = H(S4), min H(tr) < H(S4)  (4.9) 
~ tgB tr E OB\S4 

namely 

U ( B )  = S 4 (4.10) 

We remark that H(S4) - H(C) = 2 J -  (h - 2). 
Without loss of generality we suppose that l=l,_; and m=/~ .  By 

arguments similar to those used before, it can be proved that in a typical 
time e [2J-Ih-  2] the Markov chain starting from C, with high probability, 
will visit R2._L :=R( l t ,  12; Ii +3 ,  12+2) or R2.11 :=R( l t ,  12; Ii +2,  Iz+3).  
The symbol _L denotes the fact that the frame is growing in a direction per- 
pendicular to its shortest side (see Fig. 24). 

We denote by B2. • and B2., the basins of attraction of R2. • and R2. ,; 
their boundaries are respectively denoted by OB2.• and 0B2. jl. By con- 
sidering all the uphill paths starting from R2. • and R2. II, we get that 

min H ( a ) = H ( S 4 )  
o'~OB2,• 

rain H(a)  = H(S4)  
a e OB2. II 

(4.11) 
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More precisely, 

U(B,_. . )=S4,  U(B2,11)=S4 (4.12) 

Indeed the most relevant inequalities in the proof of (4.11) are 

(h + 2)(1 - 1 ) > 2 J -  (h - 2) > 2 J -  (h + 2) > (h - 2)(1 + 1 ) 
(4.13) 

(h + 2)(1 - 1 ) > 2 J -  (h - 2) > 2 J -  (h + 2) > (h - 2)(m + 1 ) 

We remark that H(S4) - H(R2, • = (h - 2)(l + 1 ) and H(S4) - H(R,_, ,) = 
( h -  2)(m + 1 ). In order to prove the first of the equalities (4.13), we notice 
that 

l>~ L ~ ( h  + 2 ) ( l - 1 ) >  2 J - ( h -  2) 

l+  2 <ffI  ~ 2 J - ( h +  2 ) > ( h - 2 ) ( l +  1) 

In order to prove the second one, we notice that 

l>~ L ~ m*(1) + 2 <~ ff4 

and that 

m < m * ( l ) ~ m + 2 < h 4 ~ ( h - 2 ) ( m +  1 ) < 2 J - ( h  + 2 )  

Starting from R2, .  or from R z ,  the system will typically go back to 
C before visiting other frames; these phenomena take place, respectively, in 
the two typical times e/j(h-~')(t+') and e/j(h- J.)(,,+ l). It appears clear that the 
system, before eventually leaving C to reach another frame, will wander, 
performing random oscillations, in the union of the basins B, B2. • and 
B2. ,. Then, in order to understand whether the frame will shrink or grow 
we have to describe its behavior in a larger basin, containing 
B w B2. • U B2. I1' This basin is denoted by ~ and it is defined as follows 

@ := {q: every downhill path starting from ~1 ends in C or R2. ,  or R2. ,} 

(4.14) 

We denote by $5. • and Ss., the configurations obtained by attaching 
a unit-square protuberance to the free side of the internal rectangle of R2. • 
and Rz., (see Fig. 25). By considering all the uphill paths starting from C, 
R2, •  and R2. ,, we are able to examine all the configurations in 09.  We 
get 

min H ( a ) = H ( S , ) ,  U(@) = Si (4.15) 
a E Oc~ 
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Fig. 25. 

The most relevant inequalities in the proof of Eq. (4.15) are 

1 < /*  = ( h  + 2 ) ( l -  1 )<  [ 2 J - ( h - 2 ) ] - ( h - 2 ) ( / +  1)+  [ 2 J - ( h  + 2 ) ]  

m < m*(l) ~ (h + 2 ) ( / -  1 ) < [ 2 J -  (h - 2)] (4.16) 

- ( h - 2 ) ( m +  1) + [ 2 J - ( h + 2 ) ]  

They mean, respectively, H( Ss. • > H( S1) and H( Ss. II ) > H( S1 ). Of course 
one always has H(Ss. II) < H(Ss. • 

We notice that ~ is a sort of generalized basin of attraction of C; 
indeed it is easy to see that as a consequence of m < M* the "bottom" of 

reduces to C in the sense that C is the only absolute minimum of the 
energy in ~ and, as it is easy to see, starting from any initial configuration 
a e N our process, with high probability for large fl, will visit C before 
exiting from cj. From ~ one can easily obtain, by suitably cutting in 
energy, a cycle having the same minimal saddles in its boundary: take the 
maximal connected set ~ of configurations containing C with energy less 
than H(SI ). Since it is easy to see that properties (i)-(iii) of B =  B(C(lt,  12)) 
still hold with ~ in place of B for s < l < / * ,  m < m*(l), one immediately 
gets 5e(~)  ~ S~; moreover, Va e 9 ,  

lim P+(a~,~e~,r t I~Si): 1 

and for every e > 0 

lim P c ( e  plh +)'~(/- l~-fl~ < z , ~  < e fl(h + ;.)(t- 1~ +p~) = l 
f l  ~ .:r_ 
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We want to stress that the cycle ~ is not the strict basin of attraction 
of any stable equilibrium point, but, rather, it has a several-well structure: 
it contains in its interior, beyond C, the equilibria Rz.• and R2. ,; 
moreover, it contains the internal saddles $4. The difference w.r.t the pre- 
vious case of l < L [where we had to consider the cycle/~(C) in place of 
N] is that now not all the downhill paths emerging from a e ~ end in C 
and the system, before escaping from ~,  will typically make many transi- 
tions back and forth between/~(C) and B(R2, • B(R2, II) through $4. 

We consider now the frame C and suppose that L<~l<l* and 
m* (l) ~< m </14 -- 2. We have H(S1 ) > H(Ss, tt ), H(S 4 ) < H(Ss. It). With the 
usual arguments one can prove that 

m i n  H(a)=H(Ss,.), U ( ~ )  = $5, if ( 4 . 1 7 )  
c~E0~ 

Hence the frame C is supercritical and the system starting from C will hit 
+_1 in a typical time 

exp(fl{ [ 2 J -  (h -- 2)] - (h-- 2)(m + 1 ) + [ 2 J -  (h + 2)] } ) 

In the case / . < l < l *  and m*(l)<)f,l-2<~m it can be proved that 
min~o~H(a)=H(Ss.,),  U(N)=Ss . , ,  and H(Ss. II)<H(S4). Hence the 
frame is supercritical, but the typical escape time is e #[2J-(h-))]. We 
remark that in this case H(S4)<H(S])<H(Ss.• and H(Ss.,)<H(S4) 
(see Fig. 26). Hence the set 

:= {a 6 9 ;  H(a) ~ / / (84)  } 

is a generalized cycle like the set Qt defined in ref. 15. The set ~ is a set of 
cycles communicating through the minimal saddles in $4. Starting from 9 ,  
the system, before leaving ~ will not necessarily visit all the cycles con- 
tained in ~ with energy less than H(S4). 

The system can leave B either through $4, • or through $4, ,. In the 
first case it will enter into B2. • visiting all the configurations of the cycle: 

B~,. := {~B2,• H(~)< H(S,)} 

before leaving B2, • and passing again through $4, • In the second case it 
will directly get out of 9 .  

In the case 1"~</<)14-2  and m < / ~ r - 2  we have that m i n ~ o ~  
H(a) =H(Ss. tl), U(~)=$5 ,  il, and H(Ss.,) >H(S4). Hence the frame is 
supercritical and the typical escape time is 

exp(fl{ [ 2 J - ( h  --2)]  - ( h  --2)(m + 1) + [ 2 J -  (h + 2)]} ) 

822/83/3-4-15 
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In this case the most important  inequalities are 

( h + 2 ) ( l -  1 )>  [ 2 J - ( h - 2 ) ] - ( h - 2 ) ( / +  1 ) +  [ 2 J - ( h + 2 ) ]  

> [ 2 J - ( h - 2 ) ] - ( h - ) d ( m + l ) + [ 2 J - ( h + 2 ) ]  (4.18) 

we remark that 

H ( S , )  - H(C)  = (h + 2)(l - 1 ) 

H(Ss.  • - H(C)  = [ 2 J - ( h  - 2)] - (h - 2 ) ( /+  1) + [ 2 J -  (h + 2)] 

H(Ss.  tl) - H(C) = [ 2 J - - ( h  - 2)] - (h - 2)(m + 1) + [ 2 J -  (h + 2)] 

In the case / * ~ < / < , ~ t - 2  and 3 1 - 2 < ~ m  we have that m i n ~ o ~  
H(a)  = H(Ss,  ll) and H(Ss,  It) < H(S4). Hence the frame is supercritical and 
the typical escape time is e/~[~- I~'- ~.)l. In this case we have that @ contains 
again a generalized cycle. 

We remark that in the supercritical cases discussed above, namely for 
l < / ~ t _  2, the growth of a rectangular frame is asymmetric. The frame 
grows in a direction parallel to its shortest side toward a squared frame. 
Notice that the same tendency to be attracted by a squared shape is pre- 
sent also in the contraction of a subcritical frame, which, as we have seen 
above, prefers to shrink in the direction orthogonal to its smallest side. 
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Finally we consider the case l > / ~ r - 2 .  It can be proved that 
H(Ss. PI) < H(S5, •  H(S4)< H(SI); hence the frame is supercritical and 
the typical time is e pt'-s-~h-)'~l. In this case the growth process is sym- 
metric, similar to what happens in the stochastic Ising model for any super- 
critical rectangle. This concludes the proof of Proposition 4.1. II 

R e m a r k .  In the following, to avoid lengthy repetitions, we will often 
use short expressions like the external rectangle shrinks in a direction per- 
pendicular to its shortest sides instead of "by a comparative analysis of the 
possible barriers of energy, namely looking at the set of minimal saddles of 
a suitable (possibly generalized) basin of attraction, we know that with a 
probability tending to one as fl tends to infinity the external rectangle 
shrinks in a direction perpendicular to its shortest sides." 

In Proposition 4.1 we have stated conditions of subcriticality and 
supercriticality for frames; now we state similar results for birectangles. 

Proposition 4.2. Let us consider a birectangle R:=R(L~,L2;  
M,,M_,), let L :=min{L, ,L_ ,} ,  s  M:=min{M~,M_,} 
and 57I := max{M1, M~}. If one of the conditions 

I.  

2. 

3. 

4. 

5. 

is satisfied, then 

lim 

If one of the conditions 

6. 

7. 

8. 

9. 

10. 

11. 

is satisfied, then 

L < L * , M < M *  

L ) L *, M < If/I, s + 2 < ./f4, L < L 

L>~L*, M<l f ,  I , / 2+2  </Q, L ~< L < 1",/2 < m*(L) 

L>~L*, M < )14,/2 + 2 >... ]l,I, M - - 2  < L  

L>~L*, M<Yfl, /2 +2>/)91, r , ~ < M - 2 < l * ,  s  

PR(r_l < r+l_) = 1 

L>~ L*,ff4 <~M < M *  

M>~ M* 

L>~,L*, M < _ ~  r, s  L>~I* 

L>~L*, M < ~ I ,  s  <2tl, E<~L<I*, s m*(L) 

L>~L*, M < ~ I ,  s M--2>~l* 

L>~L*, M<f f ,  I, s + 2 i> .~r,/Z~<M--2 < l*, s >~m*(M--2) 

lim PR(r+t < r _ , ) =  1 



510 Cirillo and Olivieri 

iis 
IIJZ 

Si AHI = 2 J - ( h - A )  
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$3 AH3 = (L-1) (h  + A) 

$4 AH4 = 2 J - ( h  + ,\) 

Fig. 27. 

Proof. Without loss of generality we can assume M = M 1 .  Let us 
denote by B := B(R) the basin of attraction of R and by OB its boundary; 
first of all we have to find the minimum of the energy on the boundary OB. 
We examine all the uphill paths starting from R, but the relevant ones are 
those made of steps of the kinds (2,2), (3,2), (5, 1), and (10, I) (see 
Figs. 16 and 21). The boundary configurations $1, $2, $3 and $4 reached 
by the uphill paths described above are represented in Fig. 27, together 
with the energy differences AHi = H(S~) - H ( R )  Vi = 1 ..... 4. We remark that 
certainly if both the shortest sides of the external rectangle are not "free," 
then at least one of the longest sides will be free; in this case AH2 = 
( ~ - l ) ( h - ; 4 .  

Now we consider case 1: as a consequence of the subcriticality of the 
internal and the external rectangle one has 

L < L *  ~ ( L -  1)(h + 2) < 2 J -  (h + 2 )  < 2 J -  ( h -  2) 

M < M* ~ (M - 1 )(h -- 2) < 2 J -  (h - 2) 
(4.19) 
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Fig. 28. 

But we cannot say anything about the inequality ( L - 1 ) ( h + 2 ) <  > 
( M -  1 ) (h -  2), without specifying more conditions on L and M; therefore 
the minimum of the energy on 0B is given either by $2 or $3, depending 
on the values of L and M. Thus, the birectangle R is always subcritical and 
we can express the typical time needed by the system starting from R to hit 
- 1  as 

max{ e plL - ~llh + ~.~, epl M- ~llh- ~1} 

Similar results are obtained if one supposes that the shortest side of the 
external rectangle is not "free." 

Now, we suppose L>~L*,M<ff4, and s  (see Fig. 28): the 
internal rectangle is supercritical, namely 2 J -  (h + 2) < (L - 1 )(h + 2), and 
the external one is subcritical, namely (M-1) (h -2 )<2J- (h -2 ) ;  
moreover, 

M<ff- I~(M- l ) ( h - 2 )  < 2 J - ( h + 2 )  (4.20) 

Then the minimum of the energy on the boundary OB is $2. The external 
rectangle shrinks in a direction perpendicular to its shortest sides until it 
becomes a squared rectangle, then the shrinking process goes on in both 
directions until the frame C(L1,L2) is reached in a typical time 
e ~ -  I~h - ~.~ 

Even in the case L >/L*, M </~r, and M < s + 2 < 3~r (the longest 
sides of the internal and the external rectangle are necessarily parallel) the 
system, starting from R, reaches the frame C(L~, L2). Indeed the external 
rectangle shrinks along the direction perpendicular to its shortest sides 
until this process is stopped by the internal rectangle (see Fig. 29). In other 
words, this appears when the configuration R(L, s M, s + 2) is reached 
(we have supposed, without loss of generality, that L~ =L) .  At this point 
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L + 2  

M M 

Fig. 29. 

the external rectangle will begin to shrink along the direction perpendicular 
to its longest sides, because s  and then ( L + l ) ( h - 2 ) < 2 J -  
(h + 2). Hence, the system, starting from R, reaches the frame C(L,, L2) in 
a typical time 

max { e p~ s + ~ I~h - Xl, e/J~ M - 11~/, - a.I } = e/~ r + t ~h - a 

Then, we can conclude that in cases 2 and 3 the frame C(LI, L2) is 
eventually reached, but C(LI, L2) is subcritical, hence R is subcritical as 
well. For similar reasons in cases 8 and 9 the birectangle R is supercritical. 

The typical shrinking time is given by 

max{elJ~M-11"-a~,elJ~t--'~lh+~'~} if s  

max{ePCr'+tl~h-;'~,e p~z'-l~h+~'l} if s  

With similar arguments it can be shown that in cases 4 and 5 the 
system, starting from R, hits C ( M - 2 , s  in a typical time e 2J-ch+)'~. 
Hence, the birectangle R is subcritical and the typical shrinking time is 
e -'J-~l'+)'~. In the cases 10 and 11 the birectangle R is supercritical, as a 
consequence of the supercriticality of the frame C(M-2, s 

With arguments similar to those used before it can also be seen that 
in case 6 the birectangle is supercritical, since it first evolves toward the 
frame C(M-2,)17/-2), which is a supercritical frame since ) Q - 2 > I *  
with our choice of the parameters. 

Finally, in case 7, the birectangle is easily seen to be supercritical. 
Indeed it follows from an argument similar to the corresponding one valid 
for the standard Ising model that starting from a configuration with 
M>~M*, we get 0_ before +1 in a time of order e #{~J-~ with high 
probability for large ft. Then, starting from 0_, we typically follow an Ising- 
like nucleation path ~-~" 19) leading to +1  through the saddles ~(0_, +1).  
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These saddles are given by configurations with precisely one cluster of 
pluses (in the sea of zeros); this cluster is given by a rectangle 
L* x ( L * - 1 )  with a unit-square protuberance attached to one of its 
longest sides. It is immediate to verify that 

H(,_V'(Q, +1))  < H(.~) 

See the definition of ~ in Section 2. The proof of Proposition 4.2 is 
complete. | 

We consider now a plurirectangle R. We denote by M~ and M 2 the 
lengths of the sides of the external rectangle, by L~.; and L2, iVi= 1 ..... k + 
the lengths of the sides of the k + internal rectangles R + , and we define 
M : =  min{ M, ,  M2} and L ; : =  min{L,.,., Lz.i}Vi= 1 ..... k+. In order to 
state conditions of subcriticality and supercriticality for such configura- 
tions, we must introduce the rectangle R + defined as the rectangular 
envelope of the union of all the internal supercritical rectangles. We denote 
by Lt, n+ and L2, R+ the lengths of its sides and we define L m := 
min{L~,,~+,L2,R+} and s  R+,L2. e+}. Suppose that 
3iE{1,2 ..... k § such that Li>~L*; we denote by /~ the birectangle 
obtained by removing all the internal rectangles and by filling up with plus 
spin the rectangle R +. Finally we state the following proposition. 

P r o p o s i t i o n  4.3. If one of the two conditions 

1. L i < l * V i = l  ..... k § and M < M *  

2. 3i e { 1, 2,..., k § such that L~ >/L* and /~ is subcritical 

is satisfied, then 

lim PR(r t < r + l ) = l  
f l  ~ ct2_, 

Proof. Let us consider case 1: we prove Proposition 4.3 by describing 
the shrinking process. 

First of all, the internal rectangles whose sides are such that 
( L i -  1 )(h + 2) < ( M -  1 )(h - 2) shrink in a typical time exp[fl(L,.- 1 )(h +2)] .  
We denote by R ~1 the rectangular envelope of the union of all the "surviving" 
rectangles RI l~ V i e I l ~ c  { 1,..., k + } and by s its longest side. 

At this point the external rectangle starts shrinking (if it can). If 
s ~ 4 M -  2, this contraction ends when the external rectangle reaches R ~ 
(see Fig. 30). 

Let us define Lmin := mini~ ~,, { L i} : the internal rectangle Ri + such that 
L i = L m i  n starts shrinking and loses a slice of length L i =  L m i  n. There are 
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two possible situations (see Fig. 31 ): after this contraction the external rec- 
tangle has a "free" side or not. In the first case the external rectangle loses 
another slice and a configuration of the type described in Fig. 30 is reached. 
In the second case the internal rectangle goes on shrinking until it disap- 
pears, and a configuration like the one in Fig. 30 is reached, as well. In 
both cases the plurirectangle goes on shrinking by the mechanism 
described before until it disappears; hence in the case s  the 
plurirectangle R is subcritical. 

Now, we consider the case s M - 2 .  During the second phase of 
the contraction the system reaches a configuration characterized by an 
external rectangle whose sides are M and s  The "free" side of the 
external rectangle is eventually s + 2. If (s + 1 )(h - / l )  < (L,.-- 1 )(h + 2) 
ViE I t~, the external rectangle shrinks in a direction perpendicular to its 
"free" side until it reaches Rttl; and then the shrinking goes on as we 
have described before. If there exists an internal rectangle R~ + such that 
( s  + 1)(h - 2) > ( L ~ -  1)(h + 2), it disappears before anything else can 
happen. Then the contraction goes on as described before. In conclusion we 
have proved that in case 1 the plurirectangle R is subcritical. 

In case 2 the proof of Proposition 4.3 can be achieved with arguments 
similar to those used in case 1. | 

Fig. 31. 
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5. C O M P A R I S O N  B E T W E E N  S P E C I A L  S A D D L E S  

Let us consider a subcritical frame or birectangle; we say that such a 
configuration is almost supercritical iff it can be transformed into a super- 
critical minimum by attaching to one of its internal or external sides a 
whole slice. By attaching a slice to an internal or external side of a birec- 
tangle (or, in particular, of a frame) we mean transforming from - 1  to 0 
the value of the spins in the row or column adjacent externally to this side. 
"Removing a slice" is the inverse operation of "attaching a slice." 

Let us consider a supercritical frame or birectangle; we say that such 
a configuration is just supercritical iff it can be transformed into a subcriti- 
cal minimum by removing a whole slice from one of its internal or external 
sides. 

Let us consider an almost-supercritical frame or birectangle; we denote 
by u the internal or external side such that by attaching to it a whole slice 
we obtain a supercritical configuration. We call special saddle the con- 
figuration obtained by attaching to u a plus unit protuberance if u is an 
internal side, or a zero unit protuberance if u is an external one. 

Let us consider the set ~ := ( ~  u ~,_) c / 2  a with ~ and ~, the set of 
special saddles shown in Fig. 32, where we have used the definition 

2J- (h- ;~)  
6 : = l *  e]O, 1[ (5.1) 

h 

We state the following lemma: 

~l = 7"91,, if ~ < - ~  

/*+2 

T'2 

t /*+2 

M * - 1 

Fig. 32. 

I--1 

/*+1 

t M* 

7~1 = 7~:.b if (f > h+A 
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I*+2 I 
/*+1 /*+2 

Fig. 33. 

t /*+2 

that 
Lemma 5.1. For  any special saddle S r  ~ there exists S * ~  ~ such 

H(S) > H(S*)  

Before starting the proof, we observe that the frame C(l*, l*) is super- 
critical and C(l* - 1, l* - 1) is subcritical for any choice of the parameters 
2 and h; indeed it can be proved that 

m*(l* - 1 ) ~ l* for any value of h and 2 (5.2) 

[see (5.5)]. On the other hand, we remark that the criticality of the frame 
C(l* - 1, /*) depends on the value of the real number ~ defined in (5.1). By 
comparing the energies of the two configurations shown in Fig. 33 one can 
easily convince oneself that 

h + 2  
C(l* - 1, l*) subcritical iff 6 < - -  

2h 
h + 2  

C(/* - 1, /*) supercritical iff 6 > - -  
2h 

we observe that (h + 2)/2h E ]0, 1 [ if h/2 > I. This explains the reason for 
the twofold definition of the configuration .~. 

Proof o f  Lemma 5.1. Let us suppose that f i< (h +2)/2h. One can 
prove that for any l such that L<~l<~l*-1  

m*(I)>ll* + 1 (5.3) 

First of all we observe that m*(I) is a decreasing function of l, more 
precisely, one can easily prove that 

m * ( l - 1 ) > ~ m * ( I ) + l  Vl~ [ L , / * -  1] (5.4) 
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C'l (-~) 1 
m +2 

with 1' < m < m*(l ' - l ) - I  

1"+2 

Fig. 34. 

Therefore in order to get a lower bound to m*(l) it is sufficient to evaluate 
m*(l* - 1 ); with some algebra one can easily obtain 

2/, ] 
m * ( l * - - I ) =  l* + (1 - 6 ) ~ ]  (5.5) 

Then, 

h + 2  2h 
6 < ~ ( 1  -6)/-/7~_ 2 > 1 ~ m * ( l * -  1)>~/* + 1 

this completes the proof of inequality (5.3). We remark that the validity of 
(5.4) and (5.5) does not depend on the value of the real number 6. 

Now, in order to prove Lemma 5.1, we have to examine all the 
possible special saddles. 

Case C1. We consider the special saddle C~(m) in Fig. 34. It 
can be easily shown that H ( C j ( m - 1 ) )  is an increasing function of 
me  [ l * , m * ( l * -  1 ) -  1]; indeed 

H( Cl(m + 1 )) - H(Cl(m)) = (h + 2) - 2 h  6 > 0 

by virtue of the hypothesis 6 < (h + 2)/2h. Hence, 

H(Cl(nl))>>.~ V m ~ [ l * , m * ( l * - l ) - l ]  (5.6) 

We observe that the equality is verified in (5.6) iff m=l*.  that is, 
C , ( m ) - ~ .  

Case C2. We consider the special saddles C2. a(l ) and C,b(l) in 
Fig. 35. We remark that the configuration obtained from C2. b(l) by removing 
the protuberance is subcritical because m*(l-1)~>m*(l)+ 1. 
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C.,.,,,(I) [ _ _ _ ~ _ _  

/+2  

777 + 3 

L < / < / * - I  
777 = m * ( / ) - i  

C2,b(/) 

m +2 

/+2  

Fig. 35. 

L < / < / * - I  
m = m*(1) 

We have that H( C2., (1)) < H( C2. b(l)); indeed, H( C2. a (l)) - H( C2. b(l) ) 
= (h + 2)(/--  m*(l))  and l -  m*(l)  < 0; the last inequality is a consequence 
of the fact that l < l* and of Eq. (5.2): m*(l) >>. m*(l* - 1 ) >>. I* > I. 

We observe that H(C2.,,(I)) is a decreasing function of / :  

H ( C 2 . , , ( I + I ) ) < H ( C 2 . , ( I ) )  Vle [ L , / * - 2 ]  (5.7) 

Indeed, it is not difficult to show that 

H( C z, , ( /  + 1)) - H( C2,,,(I)) = (h + 2) + 2 h ( / *  - / -  ~ ) ( m * ( /  + 1 ) 

- m*(l))  - 2h(m*(l + 1 ) - l* + ~) 

and by observing that l * - l - 6 > + l , m * ( l + l ) - m * ( l ) < - l ,  and 
m*( l+  I ) - / * + ~ < 0  we obtain 

H(C2.,,(I+ 1)) -H(C2. , , ( I ) )  < (h + 2)- -  2h = 2 - h  < 0  

This completes the proof of the inequality (5.7). 
Since H(C2.,,(I)) is a decreasing function, we have to compare the 

energy of the two configurations C2. , , (1" -1 )  and ~ ;  by a direct calcula- 
tion one obtains H ( C 2 . , , ( I * - 1 ) ) >  H ( ~ ) .  

Case B1. We consider the special saddles .~l . , , (M,h;I;s  and 
Mj,h()l;/; L,/2) in Fig. 36 (here and in the following we use the notation 
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t3~,~(M, ~; L) t 
/~.I M - 1  

3 
6~,b(,g_t; r ,  L) 

(~) (b) 

Fig. 36. (a) The internal horizontal dimension is L* - 1 and the vertical one s is such that 
s The external vertical dimension is ~7/ and the horizontal one M is such that 

~< M < M*. If we choose the parameters h and 2 such that .~ = M*, then the special saddle 
(a) does not exist. (b) The external horizontal dimension is ~r I and the vertical one is/Q. 
The internal dimensions L and s are such that L>/L* and by removing the external unit 
protuberance one obtains a subcritical birectangle. 

in t roduced  in P ropos i t i on  4.2 to label  the in ternal  and  external  sides; we 
use L, s  M, and M to denote  the d imens ions  of  the b i rec tangle  ob ta ined  
by  removing  the unit  p ro tube rance  of  the special  saddle) .  

We observe that  

H( ~t. ,,( M, IQ; s  >t H( :~,. ,( fff, IQ; L * ) ) (5.8) 

for every poss ible  choice of  the posi t ive integer  numbers  bY/, M and s This  
is an obvious  consequence  o f  the fact that  L = L* - 1 < L* and  M < M*.  

Now, we t ransform M~.,,(M, M;  L*)  into ~t in several  steps and we 
evalua te  the energy cost  dHi  of each step. 

�9 ~ l .  ,()Q, ffI; L*) --* R(L* - 1, L*;  3]r , /~) ,  z lHl : =  H(R(L*  - 1, L*; 
M, M))  - H(~, .  ,,(m, M; L* )) = - [ 2 J -  (h + 2)] .  

�9 R ( L * - I , L * ; M , M ) ~ R ( L * - I , L * ; I * + 2 ,  I*+2) ,  A H 2 < 0  
because the external  rectangle  is subcri t ical  and  h q r > / * + 2  [see 
inequali t ies  (3. r7)  ]. 

. R ( L * - I , L * ; I * + 2 , 1 * + 2 ) - ~ R ( L * , L * ; I * + 2 ,  I*+2) ,  A H 3 < 0  
because a whole  in ternal  slice of  length L* has been a t t ached  to the inter-  
nal  (relat ively)  supercri t icaI  rectangle.  

�9 R ( L * , L * ; l * + 2 , 1 * + 2 ) ~ R ( l * - - l , l * ; l * + 2 , 1 * + 2 ) ,  zlH4<0 
because the in ternal  rectangle  is supercr i t ical  and  L * <  l * - 1 .  

�9 R ( 1 " - 1 ,  l * ;1"+2 ,  l * + 2 ) - - - , ~ ,  d H s = 2 J - ( h + 2 ) .  
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L 
I32(~I; L, L) ~ l'vl 

! 
M*-I 

Fig. 37. The internal dimensions L and s are such that the bircctangle obtained by removing 
the zero unit protuberance is subcritical. The external dimension M* - l and M are such that 
M>~ M*. 

One has that ~ =  t dHi < 0, hence H(.~l..(/~r, )~r; L*)) > H ( ~  t). This 
inequality and (5.8) lead to the conclusion that 

H(~,. ,(M, hT/; s > ~ (5.9) 

for every possible choice of hT/, M and f .  
In order to characterize the special saddle ~,b(217/; L, s we have to 

distinguish two possible cases. 

Case (i). s  The birectangle R(L, s 2 t t -  l, 3~/), obtained 
from Mkd/ff/; L, s  by removing the external unit protuberance, must be 
subcritical. Then, by virtue of Proposition 4.2, one can say that must 
necessarily have ( M - 1 ) - - 2  ~< I * - l ,  that is &l<~l* +2.  This is absurd 
[see inequalities (3.17)]. Then we can conclude that there does not exist a 
special saddle ~l.b(M; L, s such that s  >~M. 

Case (ii). s + 2 < A~r: The internal rectangle L x s must be contained 
in the rectangle L •  otherwise the birectangle R(L,s 
h ~ ' - l ,  217/) would be supercritical. Now we transform the special saddle 
M~.b(~r; L, s  into Cz.,(L+ l) (notice that L>~L* ~ L +  1 >~L) and we 
show that the energy is reduced. 

�9 ~,.  o(h;/; L, s --. R(L, s h7./- 1, hT/), AH, = -- [ 2 J -  (h - 2 ) ] .  

�9 R (L , s163  dH~<~O because s 
L>~L*. 

�9 R ( L + I ; s  dH.a<~ 
0 because L t> L* and s <~ m*(L + 1 ) - 1. 

�9 R ( L + I , m * ( L + I ) - I ;  ) g I - 1 , ) g I ) ~ R ( L + I , m * ( L + I ) - I ;  L + 2 ,  
m*(L+ 1)+2),  z lH4<0 because the external rectangle is subcritical and 
L + 2 < M - 1 .  

�9 R(L+ 1,m*(L+ 1 ) -  1; L + 2 ,  m*(L+  1)+2)---, C2,,(L+ 1), AHs= 
~- (h+2) .  
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~3(M, ~?; L) t A? 

M 

Fig. 38. The internal horizontal dimension is /* -  I and the vertical one /2 is such that 
/*~</2 < ~1~-2 and /2 < ii1"(1"- I). The external vertical dimension is M and the horizontal 
one is M < h~. 

Hence, 

H ( ~ ,  b(/~t; L, I2)) > H(C2, ,,(L + 1)) > H ( ~ )  (5.10) 

for every possible choice of the dimensions/O, L, and/2. 

Case B2. We consider the special saddle ~2(h~r; L,/2) in Fig. 37. 
Two possible cases must be considered. 

Case (i). M * > , Q :  The internal rectangle is subcritical, hence by 
removing it we obtain a configuration at lower energy. Then, by means of 
arguments similar to those used in the case of the standard Ising model 
(see e.g., ref. 13), one can prove that 

H(~2(~t; L,/2))/> H(dJ2) (5.11) 

where the equality stands iff ~2(3~t; L,/2) = ~ .  

Case (ii). M * = . Q :  See the discussion for the special saddle 
.~?,, b(57/; L,/2). 

Case B3. We consider the special saddle ~3(M,/}'~/; s in Fig. 38. 
One can easily prove that H(~3(M, h~t;/2))>/H(C~(/2)) by virtue of the 
inequalities M < M* and/2 + 2 </~t ~< M*. 

Hence, we conclude that 

H(~3(M, )O;/2)) >/H(C,(/2)) ~> H(.~ ) (5.12) 

for every possible choice of the dimensions M, )Q and/2. We observe that 
^ ^ 

in (5.12) the equality holds iff ~3(M, M; L) - ~ .  

Caso B4. We consider the special saddles ~4. ,(M, /Q; L) and 
M4.b(M, 217/; L) in Fig. 39. First of all we observe that 

H(~4.,,(M, Ifl;L))>~C2.,(L), H(.~4.b(M, IIJI;L))>~C2,b(L) (5.13) 
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84,,(M, ~4; L) t /34,b (M, liar; L) 

M M 

Fig. 39. (a) The internal horizontal dimension L is such that L<~ L ~</* - I .  The vertical 
one is s = m*(L) - 1 and it is such that s + 3 < M. The external vertical dimension is M and 
the horizontal one M is such that M </~.  (b) The external dimensions are like those in (a). 
The internal horizontal dimension L - 1  is such that L ~< L - I ~ < / * - 2 .  The vertical one is 
s = m*(L) and it is such that s + 2 < M'. We remark that for certain choices of the parameters 
h and 2 the configurations in (a) and (b) cannot be considered; it could be, indeed, 
m*(L) >~ ~,I- 2. 

for every possible choice of M, )1~, and L. Conditions (5.13) are a conse- 
quence of the fact that M < j~r<~ M* and /~ + 3 < 2~< M* in both cases. 
The equalities are satisfied in (5.13) iff ~4.,,(M,M;L)-=Cz,,,(L) or 
~4. b( M, ll~l; L)=- C2, b( L ). 

N o w ,  by a r g u m e n t s  s imi la r  to  those  used  in the  d i scuss ion  o f  C a s e  C2,  

we can  p r o v e  t h a t  H(&4.,,(M,/Q; L ) ) > H ( ~ )  and  H(~4,b(M, )Q; L) )> 
H ( ~ ) .  

Case B5. W e  c o n s i d e r  the  specia l  sadd le  ~ s ( i Q ;  L,  s  in Fig.  40. 

N o w  we t r a n s f o r m  the  special  sadd le  .~5(A,]r; L,  s  in to  C~(s  a n d  we 

s h o w  tha t  the  ene rgy  is r educed .  

2 

/ * + 1  

Fig. 40. The internal horizontal dimension L is such that L*~<L~< 1 " - 1  and the vertical 
one s is such that h 4 - 2  ~< s < m * ( / * -  I). The external vertical dimension is ~/. We remark 
that this special saddle does not exist if we choose the parameters h and 2 such that 
m * ( l *  - 1 ) <<. f f l -  2. 
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�9 ~5(~r;  L, s  ~ R(L, s l* +2,  ~1), AH~ = - ( h -  2 ) ( / Q -  1). 

�9 R(L, ]s l* +2, _/Q) ~ R(I* - 1, s l* +2, aT/), AH2 <~0 because L~> 
/ ~ - 2 > L *  and L<~I*--I. 

�9 R ( l * - l , s 1 6 3 1 6 3  AH3<~O since 
l * + 2 < M * .  

�9 R(I* -- 1, s l* + 2, s + 2) ~ C~(s A H  4 = 2 J -  (h + 2). 

By a direct calculation it can be proved that AH~ + A H  4~<0; then 
H(~s(~f; L, s > H(C~(s i> H ( ~  ). 

Case B6. We consider the special saddles ~6.,(M, /Q; L) and 
-~6. b(M, ~r; L) in Fig. 41. 

Now, we transform the special saddle .~6,,,(M, M; L) into C2.a(M- 2) 
and show that the energy is reduced. 

�9 ~6,o(M,~f;L)- -*~6, , (M,s  AH~<~O since M ~ < I * + I <  
M*. 

�9 M 6 . , ( M , s  AH2<~O because s 
l* >L*. 

Hence, we conclude that H(~6,,,(M,h?I;L))>~H(Cz.a(M-2))> 
n ( ~ ) .  

The special saddle ~6.b(M, ~ ;  L) can be transformed into the con- 
figuration C2, b(M-- 1) reducing the energy. 

B6,b(M, _~r; L) B6., (M,-~I; L) 

M M 

Fig. 41. (a) The internal horizontal dimension L is such that L>~L*. The vertical one is 
s  1 and it is such that s + 3/>/Q. The external vertical dimension is .~ /and 
the horizontal one M is such that L ~ < M - 2  <~ l* -1 .  (b) The internal horizontal dimension 
L is such that L>~L*. The vertical one is s  and it is such that s  The 
external vertical dimension is M and the external horizontal dimension M is such that 
L ~ < M - 1  ~ < /* - 1 .  We remark that for certain choices of the parameters h and 2 the con- 
figurations in (a) and (b) cannot be considered. 

822/83/3-4-16 
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�9 ~6. b(M, if'I; L)---, R(L, s M +  1 , / Q ) ,  AH, = - ( h -  2 ) ( ~ r -  1). 

�9 R ( L , s  f f 4 ) ~ R ( L , s 1 6 3  
/ * +  1 < M * .  

�9 R(L,/2; M + 1, s + 2)--* R ( M - 2 ,  s M + 1, s + 2), , ~ H  3 ~< 0 because 
s >~/17/-- 2 > L*. 

�9 R (M- -2 ,  s M +  1, s  C2.b(M-  1), A H 4 = 2 J - ( h  +2). 

It is easily seen that A H j + A H 4 < O ,  hence H(~6.,,(M,h~I;L))> 
H(C2 .b (M-  1)) > H(.~).  

This completes the proof of Lemma 5.1 in the case & < (h + 2)/2h. We 
suppose, now, 6 > (h + 2)/2h and observe that in this case 

m * ( l * -  1 )=1"  (5.14) 

as follows from Eq. (5.5). In the sequel we will analyze all the cases that 
have to be discussed with arguments different from those used before. 

Case C1. The special saddle CB(m) with I * < ~ m < < , m * ( l * - l ) - I  
cannot be considered, since m*(l* - 1 ) -  1 = l * -  1 [see (5.14)]. 

Case C2. We proved above that C2. , , ( l*-1)  is the special saddle 
with lowest energy among C,_. ,,(L) and C2. h(L). This result is not dependent 
on the value of the real number ~. Hence, one can say 

H(C2. b(l)) > H(C2,,,(I)) >1 H(C,_. ~(1" - 1)) = H ( ~ )  

we remark that in the case &> (h + 2)/217 the special saddle C2. , , ( l*-1)  
and the global saddle ~ coincide. 

Case BI. In order to prove that H( J2,.,,( M, ASI;/2))>H(4), we 
have to consider two different cases. 

Case (i). /7,1->1"-1: We transform the special saddle ~.. , ,(M, /1;/; /2) 
into ~ and we prove that the energy is reduced. 

�9 ~ .  ,,(M, ) Q ; / 2 )  ---, R(L* - 1 , /2;  M ,  .~r), dn~ = - [ 2 J -  (/7 + 2 ) ] .  

�9 R ( L * - I , s  i f 4 ) ~ R ( L * - I , I * - I ; M ,  hYl), AH2<~O since 
L * -  1 < L *  and s  1. 

�9 R(L* - 1, l* - 1; M, )(4) ~ R(I* - 1, l* - 1; M, )17/), L I B  3 < 0  because 
l *  - 1 > / L * .  

�9 R ( l * - l , l * - l ; M ,  l f f I ) - - + R ( l * - l , l * - l ; l * + 2 ,  l * + l ) ,  A H 4 < 0  
since M < M *  and M > / * + 2 .  

�9 R ( l * - l , l * - l ; l * + 2 , 1 * + l ) - - + ~ , , A H s = 2 J - ( h + 2 ) .  
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We conclude that H(~l. ,,(M, 3~; s  > H ( ~  ) since Z,.5= l AH; < 0. 

Case (ii). L * - . . < s  First we notice that this case can be con- 
sidered only if 1 " - 1  > L * .  Now we transform :~l.,,(M,/if; s  into ~ .  

�9 ~ l . . ( M ,  37/; s  ~ R(L*  - 1, s M, ~13I), J H i  = - [ 2 J -  (h + 2) ] .  

�9 R ( L * - - I , s  ig l ) - -*R(I*- I , s  ifl), A H z < 0  since L * - I <  
/ * -  1 and s 

�9 R ( I * - I , s  i Q ) ~ R ( I * - I , I * - I ; M ,  IQ), A H 3 < 0  because 
1 " -  1 ~>L* and s  1. 

�9 R ( I * - - I , I * - I ; M , ~ I ) ~ R ( I * - I , I * - I ; I * + 2 , 1 * + I ) ,  A H 4 < 0  
since M < M *  and M > l * + 2 .  

�9 R ( I * - I , I * - I ; I * + 2 , 1 * + I ) - - * ~ , A H 5 = 2 J - ( h + 2 ) .  

Also in this case we conclude that H ( ~ .  ,,(M, ~I; s > H ( ~  ). 

Finally, with arguments similar to those used in the case J < (h + 2)/2h 
one can show that H(~l.b(h;/; L, s  >H(C2.,(L)) > H ( ~ ) .  

Case B3. This case cannot be considered, because the inequalities 
l * - . . < s  cannot be verified [see (5.14)]. 

Case B5. This case cannot be considered, because the inequalities 
/ ~ t - 2 - . . < s  1) cannot be verified. Indeed, from (3.15) one has 
I*+3~<)Q;  hence 1 " < A 4 - 2 .  Finally, m * ( l * - l ) = l * ~ m * ( l * - l ) <  
~ - 2 .  

The proof of Lemma 5.1 is now complete. I 

6. THE SET ~J A N D  THE M I N I M U M  OF THE ENERGY ON 0~  

In this section we define a set ff of configurations which will play a 
basic role in the proof of our results, ff will constitute an "upper estimate" 
of the generalized basin of attraction of - 1 ,  in the sense that every sub- 
critical configuration, that is, a configuration a such that 

lim Po-(Z'_l <z'+[)=l (6.1) 

will belong to if; moreover, given any r/E if, there exists a downhill path 
leading to a configuration a satisfying (6.1). On the other hand, there are 
configurations r/e ff which are supercritical in the sense that 

lim P , ( r _ !  > r+! )  = 1 (6.2) 
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The crucial property of ~ will be that the minimum of the energy in 
its boundary a ~  will be given by ~ or ~2. 

We will see that this implies that for every configuration a with suf- 
ficiently low energy [ H ( a ) < m i n  {H(~I), H ( ~ ) }  ], (6.1) is satisfied. 

It is possible to find examples of configurations belonging to f# which 
are potentially supercritical in the sense that (6.1) fails. 

To construct .~, first of all we define a map ~ :  a -o ~ = ~ a  with ~ an 
acceptable configuration and # a local minimum of the energy, such that 
the two following properties are satisfied: 

H(O) <~ H(a) 
(6.3) 

a - < #  

that is, the local minimum ~ is bigger than a and at a lower energy level. 
Then we define the set a3 as the set of configurations a such that ~ is sub- 
critical, that is 

e o ( r _ l _ < r + l )  ~ 1  as f l ~ o v  

Now we define the map ~ :  a ~ 8; the definition is given in the following 
six steps. Let a be an acceptable configuration: 

(i) Starting from a, we construct the configuration al by turning 
into zero all the minus spins of a which have at least one plus spin among 
their nearest neighbor sites. We remark that H(a~)<<, H(tr) (see Fig. 2) and 
a - ~ a l .  

(ii) Let us denote by c F the minus-spins cluster in the configuration 
al which is winding around the torus and by c F all the other minus-spins 
clusters in a~. In a~ there is no direct interface + - ; then we can conclude 
that every c F cluster is inside a zero-spins cluster. Now we consider the 
configuration a2 obtained from a~ by turning into zero all the minus spins 
in all the clusters c F. The result a~ ~ a 2  is obvious. We have also that 
H(a2) ~ H(cr~); indeed, in every cluster cF there is at least one minus spin 
with two zero spins among its nearest neighbors; this spin can be transformed 
into zero, lowering the energy. We can repeat this argument until all the spins 
of the starting cluster c F have been transformed into zero. 

(iii) In a2 there is no direct interface + - ;  then we observe that 
every cluster of" plus spins is inside a cluster of zero spins; it can happen 
that in some of the plus-spins clusters there are one or more clusters of zero 
spins. We construct the configuration cr 3 by removing all these clusters of 
zero spins. With arguments similar to those used in step (ii), one can prove 
that n(o'3)~< H(a2) and a2 "<~0" 3- 
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(iv) The configuration a3 is made of a minus-spins cluster which is 
winding around the torus, the zero-spins clusters denoted by c o 
Vie { 1, 2 ..... k~ and the clusters with plus spins ci+j Vie { 1, 2 ..... k ~ and 
Vje{1,2  ..... kg+}. The clusters c/+jVje{1,2,...,k~ +} are all inside the 
cluster c ~ We consider now the rectangular envelopes R~ ~ 
Vi e { 1, 2 ..... k ~ and the configuration 0 4 obtained by filling all these rect- 
angles with zero spins; in this step the plus spins are not changed. It is 
immediate that H(o'4)~H(o'3) and a3 -~o'4. 

(v) Apart from the plus-spins cluster, the configuration a4 is made 
of zero rectangular clusters placed in the "sea" of minus spins. We obtain 
the configuration a5 by means of the chain construction used in ref. 9 
applied to the rectangular clusters R~ e { 1, 2 ..... k~ 

Let us briefly describe this construction. Given a set of rectangles 
R,,...,~ R ~ we partition it into maximal connected components cg~)j with 
j = 1 ..... k ll~ called chains of first generation 

(R o RO) = ( ~ , , ,  ~, ,o ,  
. . . . . .  k t i) ) 

0 0 The notion of connection is given by pairwise interaction: a set R, ..... R., of 
rectangles is connected if it cannot be divided into two non-interacting parts. 

Now consider the U ~1 rectangles R(~ ')) obtained as the rectangular 
envelope of the union of the rectangles belonging to ~ ) .  Partition this set 
of rectangles into maximal connected components: in this way we construct 

(~(21 6r the chains of second generation ~o t . . . . . .  k,=~- We continue in this way up 
to a finite maximal order n such that the chains of the nth generation are 
noninteracting rectangles (see ref. 9 for more details). 

We call a5 this configuration containing these noninteracting rect- 
angular clusters Ko Vie { l, 2 ..... k ~ of zero spins placed in the minus-spins 
"sea." With usual arguments one can prove that H(a5) <~ H(a4) and a4 -<: as. 

(vi) By repeating the operations described in points (iv) and (v) for 
the plus-spins clusters lying in every rectangle /~o Vie { l, 2 ..... k~ we 
obtain the final configuration d. This configuration is made of the external 
rectangular zero-spins clusters /~.o Vie { l, 2 ..... k ~ and the internal non- 
interacting plfis-spins clusters /~,.+j Vie { l, 2 ..... k ~ and Vje { 1, 2 ..... 
k+'f}. As usual, one can prove that H(8)~< H(a 5) and as ~ 8 .  

The definition of the map ~ is now complete; we observe that 8 is a 
local minimum and that the properties (6.3) are satisfied. Finally, we 
remark that the map ~ is monotone in the sense that 

a < q = > ~ O  (6.4) 

for every pair of acceptable configurations a and 17. 
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Now we state the following result. 

Proposition 6.1. We have 

U ( ~ ) c ~  (6.5) 

Namely, the set of minima of the energy in the boundary of .~ is contained 
in ~ .  

Proof. In order to prove Proposition 6.1, we consider a configura- 
tion pIE0~ and we show that there exists a special saddle 0 such that 
H(r/)/> H(~/). Then Proposition 6.1 will follow from Lemma 5.1. 

Let us consider q E ~; there exists a configuration a = ~7-" b with x E A 
and b ~ r/(x) such that a E c5. By virtue of the monotonicity of the map 
[see (6.4)] and of the fact that ~ is a subcritical local minimum, it follows 
that b < 1/(x); hence we also have that b va + 1. 

We denote by R~ ViE {1 ..... k~ and by Ri+j(~) VjE {1 ..... k+(#)} 
and ViE { 1,..,, k~ the rectangles respectively of zeros and pluses which 
appear in the configuration #; we remark that all the rectangles Ri+j(#) 
VjE {1 ..... k+(~)} are inside the zero rectangle R~ In the following, by 
abuse of notation, we will also denote by R~ what we will call the struc- 
ture R~ namely the complex given by the "external" rectangle together 
with all its "internal" rectangles of pluses (what before we called a plurirect- 
angle is indeed a configuration containing a unique structure). 

Case 1. b = - 1 and r/(x) =0.  From the definition of the map ~ it 
easily follows that necessarily x lies outside the rectangles R~ 

Given the configuration 0, we denote by R~ ViE { 1 ..... k~ and by 
Ri.+j(O) Vje {1 ..... k,.+(~)} and ViE { 1 ..... k~ the rectangles respectively of 
zeros and pluses which appear in it. We denote by/~~ the supercritical 
structure among the R~ and by /~o ..... K~ ~ the rectangles of zeros such 
that ViE {1 ..... s} /~o appears in ~ and ViE {1 ..... s} K '~ is "inside" the rect- 
angle/~o(0). 

We consider the configuration r/i defined as follows: ~l~(x)=0; all the 
other spins are minus except for the zeros and the pluses of the structures 
/~0 Vi E { 1 ..... s}. It can be easily proved that H(I 1) >~ H(lll ). We distinguish 
two cases as follows. 

Case I. 7. All the rectangles of pluses which appear in tTl are subcritical. 
We consider the configuration qt.l obtained from 17] by changing into 

zeros all the plus spins. We remark that H(Jl~)>~H(PIH) because 17].~ has 
been constructed by removing subcritical rectangles of pluses. 

With an Ising-like argument (see, e.g., ref. 9) one can prove that 
HO1H)>~H(~2). Hence in Case 1.1 we find a special saddle with energy 
lower than the starting configuration r/. 
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Case 1.2. In 111 there exists at least one supercritical rectangle of 
pluses. 

We consider the configuration J11.2 obtained from r/l by removing in 
every structure K 7 VIE{1 ..... s} all the subcritical rectangles of pluses and 
by filling with pluses the rectangular envelope of the union of the super- 
critical rectangles of pluses. We remark that every structure/~7 Vi e { 1 ..... s} 
in q,.2 is either "empty" (with no rectangle of pluses inside) or it has just 
a rectangle of pluses inside and this rectangle is supercritical. 

We denote by Q the unit square centered at the site x e A; we distinguish 
the two following cases: 

Case 1.2.1. One of the structures ~o Vie { 1 ..... s} of t /m (we denote 
it by/~~ 1 ) interacts with (2 and the structure obtained by filling with zeros 
the rectangular envelope of/~~ w (2 is supercritical. 

Let us denote by q~.z, the configuration obtained by removing in t/~ all 
the structures /~o Vie{ l  ..... s} except for /~~ If Q is adjacent to /~o._,.~, 
then ~h._,.l is a special saddle. Otherwise Q is at distance one from one of 

- - 0  the sides of the rectangle /~~ or Q and R~.z. 1 touch in a corner; in this 
case one can easily find a special saddle with energy lower than H(~/I.2). 

Hence in Case 1.2.1 a special saddle with energy lower than the 
starting configuration q has been found. 

Case 1.2.2. Condition 1.2.1 is not fulfilled. 
By an argument similar to the one used in ref. 9 (see pp. 1136-1137 

therein) we can find two structures/~1 and/~z such that they are both sub- 
critical, their external rectangles are interacting, the structure obtained by 
filling with zeros their rectangular envelope is supercritical, and H(q~.2)>I 
H(/~,) +H(R2) [when we say H(/~;) with ie{1,  2} we are referring to the 
energy of the configuration obtained by plunging the structure/~j into the 
"sea" of minuses]. We still have to distinguish between two possible cases. 

Case 1.2.2.1. Both structures Ri with ie  { 1, 2} have a supercritical 
rectangle of pluses inside. 

Now we consider a just-supercritical frame whose external rectangle is 
contained in the rectangular envelope of the union of the two external 
rectangles of/~l and of R2. Such a frame surely exists and we denote it by t~. 

Starting from -~1 and /~_, and recalling that these structures are 
subcritical, one can construct two other structures, 911 and 9t 2 (birectangles 
or frames), such that the three following conditions are satisfied: (i) 
H(/~, ) ~> H( ~11 ) and H(/~o_ ) >~ H( ~lz); (ii) if the two external rectangles of the 
two structures ~ and ~2 touch at a corner, then the rectangular envelope 
of the union of the external rectangles of ~'1~ and of ~_, coincides exactly 
with the external rectangle of the frame C; (iii) at least one of the two internal 
rectangles of pluses (the one in ~ l  or the one in ~z) is supercritical. 
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If one considers the configuration r/i.2.2.~ obtained by plunging the 
structures into the "sea" of minus spins such that the external rectangles of 
fil I and of ~2 touch at a corner, one can easily convince oneself that 
H(11,.2) >~ H(rh.2.2.1). 

Finally, starting from 111.2.2.1 we construct the special saddle 7/ by 
performing the following steps: (i) we fill with zeros the rectangular 
envelope of the union of the two external rectangles of zeros in/11.2.2.1; (ii) 
we let grow the internal supercritical rectangle of pluses until the frame 
is reached; (iii) we transform into zeros all the pluses, except for one, of 
one of the four sides of the internal rectangle, such that a special saddle is 
obtained. It can be easily proved that H(lh.z2.~)>H(~) by comparing the 
energy differences involved in the three steps described above. We remark 
that the energy increase of the third step is largely compensated by the 
energy decrease involved in the second step. 

Case 1.2.2.2. One of the structures H(/~i) is "empty," in the sense 
that it has no rectangles of pluses inside. 

This case can be discussed with arguments similar to those used in 
Case 1.2.2.1. 

Case2. b = -  1 and q(x)= + 1. Starting from ~, one can always 
construct a configuration 112 such that (i) r/2 ~ a ~  and (ii) qy ~ A such that 
r h ( y ) - - 0  and q i" -1  ~ (#. In this way the proof has been reduced to Case 1. 

Case 3. b = 0. The site x is inside one of the rectangles of zeros 
R~176 we denote it by /~o. There are two possible cases 
that must be considered. 

Case 3.1. x is not on one of the boundary slices of s (the typical 
situation is depicted in Fig. 42). 

In this case the rectangles of zeros in i~ coincide with those in ~, but 
the structure/~~ is supercritical [/~o(~) is the structure of i~ such that its 
external rectangle of zeros coincides with/~o]. 

I I 

B 
Fig. 42. 
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I I 

X 

Fig. 43, 

We consider the configuration t13.~ defined as follows: (i) r]3.1 is 
obtained starting from t~ by removing all the structures R~ 
Vi~ { 1 ..... k~ except for the one whose external rectangle coincides with 
the external rectangle of the structure /~o [we denote this structure by 
/~o&)]; (ii) q3.~(x)= + 1. It can be easily proved that H(q)>~ H(q3.1). 

We denote by R l the rectangular envelope of the union of the super- 
critical rectangles of pluses inside K~ and by R2 the rectangular envelope 
of the union of the supercritical rectangles of pluses inside R~ We 
remark that the two structures /~~ and /~~ have different internal 
rectangles of pluses, even though their external rectangles of zeros coincide. 

Now we observe that there exists a rectangle R3 contained in Rz and 
containing R~ such that the configuration with all the spins minus except 
for the zeros in the rectangle K ~ and the pluses in R3 is an almost-super- 
critical configuration. We consider the special saddle 0 obtained by 
properly putting a unit plus protuberance to one of the four sides of the 
internal rectangle of pluses of the almost-supercritical configuration found 
before. It can be easily shown that H(173.1)>/H(O). Hence, even in this case, 
we have found a special saddle with energy lower than the energy of the 
starting configuration ~1 e Of#. 

Case 3.2. x is on one of the boundary slices of/~ ~ (see, for example, 
Fig. 43). 

We construct the configuration q3.z starting from d and by turning 
into zero only the spin minus at a site nearest neighbor to x. One can easily 
convince oneself that H(O)>1 H(r/3.2). If 113.2 ~ ~,~, then the proof is reduced 
to Case 1; if q3.2 ~ff,  the proof is reduced to Case 3.1. 

The proof of Proposition 6.1 is now complete. | 

7. P R O O F  OF T H E  T H E O R E M S  

Let us first give some definitions extending the ones given in Section 4. 
We recall that by C(lt, 12) we denote the set of configurations containing 
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only a frame with internal sides/~, 12. We recall the notation / := min { 1~, 12}, 
m :=max  {ll, 12}- 

We denote by S(lj,/z) the set of configurations obtained from CUt, 12) 
by substituting one of the smaller internal sides with a unit square 
protuberance, namely by substituting all but one plus spin adjacent from 
the interior to one of the internal sides of length I with zeros (see Fig. 44). 

We denote by R(I~, 12) the set of configurations containing a unique 
birectangle obtained by erasing the internal unit-square protuberance from 
S(I~, 12) (see Fig. 44). We denote by G(I~, 12) the set of configurations 
obtained from the frame C(l],12) by adding a unit-square spin-0 
protuberance to one of the longer external sides in C(I~, 12). A particularly 
relevant case will be the one II~-121 ~< 1 where either m = l +  1 or m = l. 
We remark that G(I -  1, l) is obtained from the birectangle R(l, I) by sub- 
stituting one "free" external row (or column) of zeros of length l +  2 with 
a unit-square protuberance (see Fig. 44); similarly G ( I - I , I - 1 )  is 

c(t, t) s(t, t) n(t, t) 

_t 
1+2 1+2 1+2 

G(l-1, l) C(l-1, I) S(l-1, I) 

/ + 1  I+1  / + 1  

R(l-l,I) G(I-l,l-1) C(I-l,l-1) 

LI m 
/ + 1  l + l  / + 1  

Fig. 44. Contraction of a squared frame. The energy differences involved in each single step 
of the contraction are ( h + 2 ) ( / - I ) ,  - [ 2 J - ( h + 2 ) ] ,  (h- ) , ) ( l+l ) ,  - [ 2 J - ( h - 2 ) ] ,  
(h+ 2)(I-2),  - [ 2 J - ( h + 2 ) ] ,  ( h - 2 )  I, - [ 2 J - ( h - ) , ) ] .  
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obtained from R(I-1, l) by substituting one free external row or column 
of spin 0 of length l + 1 with a unit-square protuberance. 

Finally let us denote by /~(l I, 12) :=R(0,  0, ll, 12) wR(O, 0, 12, l~) the 
set of configurations without plus spins where the zero spins are precisely 
the ones contained inside a rectangle with sides equal, respectively, to l~, 12. 

We want to prove now Theorem 1. 
Let ~ be the set of protocritical saddles or special minimal saddles. 
If 0 < 22 < h: ~ = .~ in Fig. 32; namely ~ is the set of configurations 

with no pluses and a unique cluster of zeros given by a rectangle with sides 
M*, M* -- 1 with a unit-square protuberance attached to one of its longer 
sides. 

If 0 < 2 < h < 2 2  and 6<(h+2)/2h, then ~=~.,,:=S(l*,l*). If 
0 < 2 < h < 2 2  and ~>(h+2)/2h, then .~=~,b:=S(l*--l , l*) (see 
Fig. 32). 

Now we notice that the set ff c / 2  A defined in Section 6 satisfies the 
tbllowing properties: 

�9 f~ connected; - 1 ~ f~, + 1 r fr 

�9 There exists a path co: - ! ~ ~ ,  contained in (#, with 

H(a) <H( t~ )  Va~co, a:/:.~ (7.1) 

and there exists a path co': ~ --* + 1, contained in fie, with 

H(a)  < H ( ~ )  Va~co', a~:~ (7.2) 

In the case ~ = ~ ,  (7.2) easily follows from the arguments of the 
proof of Proposition 4.1: co is constructed following a sequence of shrinking 
subcritical droplets, whereas co' follows a sequence of growing supercritical 
droplets. In the case ~ =~2,  (7.2) follows from the arguments of the proof 
of Proposition 4.2. 

�9 The minimal energy in 0~r is attained only for "protocritical" 
(global saddle) configurations a e ~ ;  namely, 

" min (H(a ) -H( - ! ) )=H(~) -H( - - ! )=:  I" (7.3) 
a~0cff 

min (H(cr)-H(~))>O (7.4) 
aeO'$r  

We notice that, starting from any a e ~ ,  we can change a spin adjacent 
to the unit-square protuberance always present in ~ (from - 1  to 0 in 
if h > 22 and from 0 to + 1 in ~ .  ,, or ~ .  o if h < 22) in order to get a "stable 
protuberance of length 2." This protuberance is called stable since its 
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growth takes place decreasing the energy while its shrinking requires an 
increase of energy. The probability off the above-described single spin 
change is not smaller than 1/[AI (see, for instance, ref. 13 for more details 
on this point). 

In other words, with probability separated from zero, uniformly in fl, 
starting from ~ ,  we reach the strict basin of attraction of a supercritical 
minimum. Then, for any e > 0, it follows from Proposition 4.1 that the 
probability to reach + 1 before reaching - 1  can be bounded from below as 

P.~(r+! < r_!)  >exp ( - e f t )  (7.5) 

We get from Proposition 4.1 that, for fl sufficiently large, the typical time 
starting from ~ to reach + 1 is much shorter than the typical time to get 
to .~ starting from -_1, 

lim P:~t(r+_~ < exp(F,) [ r+! < r_ i) = 1 (7.6) 
/ . / ~  zr. 

for a suitable I'1 < / ' .  
Moreover, by an analysis totally analogous to the one needed for the 

Ising model (see, for instance, ref. 13) one can get the same results starting 
from ~ ;  namely 

lim P~,( r+!  < exp(F2) I r+l_ < r _ i ) =  1 (7.7) 

for a suitable f'2 < f'- 
In the appendix we state and prove a result concerning the sequence 

of passages through ~ and the typical time to see an "efficient" passage 
through ~,  namely one followed by a descent to + 1. 

From Propositions 3.4 and 3.7 in ref. 15, Proposition A.1 of the 
appendix, (7.5) and (7.6) we easily get Theorem 1. I 

We want now to give the definition of the tube .Y- of trajectories 
appearing in the statement of Theorem 2 below. It represents the typical 
mechanism of escape from metastability in the sense that, with probability 
tending to 1 as /~ tends to infinity, during its first excursion from - 1  to 
+ 1, our process will follow a path in ~--. 

Y- will be optimal in the sense that it cannot be really reduced without 
losing in probability. 

.Y-- involves a sequence of"droplets" with suitable geometric shapes and 
suitable "resistance times" in some "permanence sets" of configurations related 
to these droplets. The precise statement about the typical paths during the 
first excursion between - i  and + 1 will involve a certain randomness of 
these resistance times inside the different permanence sets appearing in .Y-. 
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In 3" we will distinguish two parts: the "up" part ~ , ,  namely the 
ascent to ~', and the "down" part .~,,; from ~ to + 1. This second part 
is almost downhill in the sense that all the paths to = a 0, al ..... o'g, -.. ~ 
will be such that 

a o = ~ ,  3 T : ~ T =  +1 ,  max H ( c r ) < H ( ~ ) ,  m i n H ( a ) = H ( + ! )  
o-e  c o \ ~  a e o ~  

whereas ~-~,, is almost uphill in the sense that all the paths to = go, al ,..., a;, 
�9 .. ~ ~ will be such that 

c r o = - l ,  3 T : ( r T = ~ ,  max H ( c ) < H ( . ~ ) ,  m i n H ( a ) = H ( - - ! )  

In the following we give the definition of the time-reversed tube Y of Y-~,,. 
.~ will also be almost downhill; it will describe the typical first 

"descent" from the protocritical saddle to - | .  By general arguments based 
on reversibility, ~'9) we will deduce the desired results on the first excursion 
from - 1  to ~ saying that with probability tending to one as fl tends to oo 
it takes place in the tube ~, .  Then to conclude our construction of 3- we 
will only have to determine .~t. 

Let us now recall some basic definitions of ref. 15 concerning the first 
descent from any configuration r/0 contained in a given cycle A to the 
bottom F(A) valid not only for our Blume-Capel Metropolis dynamics, 
but also for a general "low-temperature" Markov chain satisfying 
Hypothesis M in the appendix. We refer to the appendix, where this more 
general setup is introduced. 

We will first define in general the set of "standard cascades" emerging 
from a configuration q0; our intention is to apply a (simplified version of 
a) result of ref. 15 stating that with high probability when fl ~ oo the first 
descent from r/o to F(A) follows, in a well-specified way, a standard 
cascade. Thus the main model-dependent work will be to determine, in our 
specific case, the set of standard cascades. In particular we will reduce the 
problem of the determination of the tube of typical trajectories followed by 
our process during its first descent to - 1  starting from a configuration cr o 
in (r immediately reached starting from the global saddle ~ ,  along a 
downhill path .entering (g, to finding the set (denoted by .~') of all the 
standard cascades (in a suitable cycle) emerging from go. 

A standard cascade emerging from a state I/o is a sequence 

Y ( l l  o , t o , ,  Pl , , to,_ ..... q M - , , to ,~ ) 

=to, u Q ,  wtoz ..... QM-, u toMUQM (7.8) 

where for i = 1 ..... M: to; is a downhill path emerging from qg_, and ending 
inside the "permanence set" Qi. Each path tog can be downhill continued up 
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to a stable equilibrium point ~i e Qi. The Q~ are special sets, being a sort 
of generalized cycle containing also the minimal saddles between ~ and 
F(A ); for i = 1 ..... M - -  1, i h E Q~ are minimal saddles between ~,. and F(A ); 
finally, ~,~t ~-QM ~_F(A) (see ref. 15, Section 4 for more details). 

Notice that coi can just reduce to one downhill step from 11~_ t to  Qi', 
in this case we use the convention co~ = q~_ l -  

We do not give here the precise definition of the Q; since it happens 
that we do not really need it. In our particular case of Metropolis dynamics 
for the Blume-Capel model with particular initial conditions (of interest for 
our applications) as we will check we have some simplifications w.r.t the 
general case. 

The most important  is that there Q; for i = 1 ..... M -  1 are replaced by 
genuine cycles A~; q~, not contained in A;, is an element of ,~(A;) and cog 
ends in the interior of A;. 

We will apply the general theory developed in ref. 15 to two cases. In 
the first one, when analyzing ~ the cycle A will be the maximal connected 
set ,4 in (2.,i containing - 1  with energy less than H ( ~ ) .  It follows from 
Proposition 3.4 in ref. 15 that ,4 is contained in the set ~ introduced in 
Section 6 and that 5e(,~) - ~ .  Always in this case we haven F(.4) _= QM - 
~M ~ - - ! .  

In the second case, in the study of ~a the cycle A will be the maximal 
connected component  ,4 in f2 A containing + 1 with energy less than H(~ ) .  
It is immediate to see that ,4 ~ ~#". In this case we have F(.4) - QM - ~,~t - 
+ ! .  

In both cases as we said before, for suitable initial conditions we will 
verify that the Q; for i =  1 ..... M -  1 are replaced by genuine cycles Ai; M 
will depend on the initial configuration qo as well as on the particular 
choice of the parameters a r, h, 2. The path co; ends in the interior of 
A;; q~ E ,9~(~;, F(A;+ ~)), not contained in A; as we said before are minimal 
saddles in the boundary c3Ag. The cycles Ai are precisely the maximal 
connected components containing ~g with energy less than H(q~) (~i eA~ 
are the minima toward which o)i can be downhill continued). 

We consider an initial configuration r/o corresponding to one of the 
following five cases: 

1. A = A : q o ~ A n [ R ( l , l ) w  R(l , l+ l) ] for some 1>//,. 

2. A = A : I l o e K ( M * , M * - I ) .  

3. A = A ,  0 < 2 < h < 2 2  and 5>(h+2)/2h: qo~B(C( l* -  1,1*)). 

4. A = A ,  0 < 2 < h < 2 2  and 6<(h+2)/2h:llo~B(C(l*,l*)).  

5. A=~I:J?o6B(R(M*,M*) ). 
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Remark. We could even consider much more general initial 
configurations Plo. It is not true (see the definition of the s e t / )  in Section 
4) that for any Plo the simplified version (involving genuine cycles A i in 
place of the sets Qi) of the general results of ref. 15 holds true. In fact with 
the very particular choice 17o~AC~ [R(L l) w R(I, I+ 1)] as we will see an 
even simpler statement holds: the r will be almost all coinciding with r/g 
(in the above-specified sense). 

Warning. We want to warn the reader of the use that we are going 
to make, in the construction of the tube .~-, of the equivalence class of 
configurations as it has been specified in the remark in the proof of 
Proposition 4.1. In fact, strictly speaking, what we will construct and call 
standard cascades are sets of standard cascades obtained from equivalence 
classes of configurations modulo rotations, translations, inversion, and 
"displacement of protuberances." 

Let us now start with the definition of the set g of the standard 
cascades emerging from a configuration cr 0 in ~ immediately reached 
starting from the global saddle JJ along a downhill path entering into f#. 

We consider first the case a = h/2 < 2. The other case of a > 2 is almost 
identical to the corresponding one for the Ising model and will be treated later. 

We have to distinguish two cases: 6 = / *  - I -2 J -  (h - 2)]/h < (h + 2)/ 
2h, when the global saddle ~ has the form :~.,, = S(I*, l*) given in Fig. 32; 
or ?~ > (h + 2)/2h when the global saddle has the form ~,.b = S ( I * - 1 ,  l*) 
also given in Fig. 32. 

Let us first consider the case 6 < ( h + 2 ) / 2 h  (as in Fig. 45 for 1=l*) .  
Let .~ =R( I* ,  l*) be the configuration obtained from ~ by erasing the 
unit-square protuberance. ~ is a subcritical birectangle; it belongs to the 
set .c4 and satisfies condition 1 above. 

To construct the tube ~ we have basically to solve the above- 
described sequence of minimax problems. To simplify the exposition we 
divide the tube .:r into four segments corresponding to four different 
mechanisms of contraction; we write 

. ~ = ~  w , ~  u . ~  w ~  (7.9) 

The most relevant ones are the first and the second parts. As we will see, 
the third part for h < 22 reduces just to a simple downhill path. 

We start from the determination of the minimal saddle q l := 
cr - 1 )  between ~ and - 1 .  

From the results of Section 4 we know that ~Se(~, - 1 )  is not trivial, 
in the sense that it differs from .~ and 

Pll :=6e(~ ,  - 1 )  = S ( / * -  1,/*) (7.10) 



538 Cirillo and Olivieri 

s(u) 

S{, I.,) 2J-(h+ 

C(I 11 

C(i_i [_i) 

Fig. 45. 

Thus the first "permanence set" Q~ of our standard cascade is the cycle 
At._ 1,1* defined as the maximal connected set of configurations containing 
R(I*, 1") with energy less than H(S(I*-1,  l*)). We recall that the basic 
inequality to be checked in order to get (7.10) is 

H(S(1, 1)) - H(S(I-  1, l)) > 0 

which is satisfied for L* ~<l~< l * - 1 .  
For any 1: L*<<,I<~I*- 1 we define the cycle At.l(At, z+~) as the maxi- 

mal connected set of configurations containing R(I,I)[R(I, I+ 1)] with 
energy less than H(S(I-1,  I))[H(S(I, l))] (see Fig. 45). By extending the 
previous argument we get that the first part of our standard cascade is 
given by 

= A / .  l . / . , S ( l * - - l , l * ) , A / . _ l . t . _  1 , S ( l * - 1 , 1 . - 1 ) ,  

A t , _ 2 , 1 , _  1 . . . . .  S(L, L+ 1), A~,L, S(L, L) 

Then we observe that for / <  L -  1, we have 

(7.11) 

H(S(I, l)) < H(G(I, l)) (7.12) 
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H(S(I, l+ I ) ) <  H(G(I, l+ 1)) 

(7.12) are the basic inequalities to get that, for lo<~l<L, 

5a(R(l, I+ 1), - 1 )  = G(I, 1) 
(7.13) 

5P(R(L 1), - 1 ) =  G ( I -  1, l) 

It is clear from the results of Section 4 that the subsequent permanence sets 
are the cycles 

AL - " " A). t ,A 2 L . L - t ,  A - s  A~- t .  r - t ,  A ~-.-t. E . - t  ..... /,I, 

A t ' A z (7.14) t . t - t ,AT . t - t ,  "'', to. to 

where /o = [hi2 + 1], lo ~< l; we notice that for our present choice of the 
parameters 2 < h  < 22, we have / o = 2, but we could consider a general 
situation lo> 2 as well when analyzing the contraction of a subcritical 
frame in the region h > 22 (case 1 above). Moreover, for lo ~< l~</~: 

A~.t_,= maximal connected component of the set of configurations 
containing R(l, l) with energy less than H ( G ( I -  1, l)); namely A t is the ~ , t - t  

strict basin of attraction of R(l,/): 

A t =/~(R(/, l)) I . l--I  

with bottom 

and minimal saddle 

F(A}.t_ t) = R(L l) 

6e(A).t_t) = G ( I -  1, l) 

A~.t_ t =maximal  connected component containing C ( I - 1 ,  l) with 
energy less than H ( S ( I -  1, l)). We have 

A t . t _ t = B ( C ( l -  l , l ) )  

F(A~ t_ t ) =  C ( l -  1, l) 

and 

~e(A~.t_,) = S ( l -  1, 1) 

For l o + 1 < l ~< L we define: 

A~_ ~,t-i =maximal  connected component containing R ( I - 1 ,  l) with 
energy less than H ( G ( I -  1, 1 -  1 )). We have 

A~_ l.t_ 1 =/~(R(I--  1, 1)) 

F(A~_l . t_ l )= R ( l -  1, l) 

822/83/3-4-17 
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and 

5e(AJ_ I . I_I )=G(I-  1, l -  1) 

A~_ 1. i-  t = maximal connected component containing C(I -  1, l -  1 ) 
with energy less than H ( S ( l -  1, l -  1)). We have 

A~_ i./_, = / ~ ( C ( / -  1, l-- I)) 

F(A]_ 1.1-1)= C( I -  1, I -  1) 

and 

5a(A]_l,l_l) = S ( l -  1, l -  1) 

Then the second segment of the standard cascade is 

AL.L_, , l  G(/7,--1, L), ' A ? . . ~ _ , , S ( / Z - I , L ) , A ~ _ ~ . r _ ~ , G ( L - 1 ,  L - 1 ) ,  

A~-_t. r_ l , S( /Z-  1 , / ~ -  I) ..... S(10,/0), A 1 Io,/o- I (7.15) 

We notice that both the first and the second parts ~-~j, ~ of the tube g 
describe a contraction following squared or almost squared frames; but 
whereas in the first part the permanence sets are cycles with many minima 
in their interior, in the second part they are "one well" in the sense that 
they coincide with the strict basin of attraction of their bottoms. The 
typical times spent inside these cycles and the typical states visited before 
leaving them are different in the two cases of .~ and ~_,. 

The third part ~3, which we are going to define, corresponds to the 
shrinking of the interior rectangle of the frame C(I o, lo). Indeed it follows 
from Section 4 [see (4.6) therein] that for l < lo the lowest minimal saddles 
in the boundary of the basin of attraction A~o" Io-i of the birectangle 

R(/o, lo) = R(lo, 1o -- 1 ; l 0 + 2, lo + 2)  w R( lo  --  1, lo ; 1o + 2, l o + 2 ) 

is not G(lo- 1, lo) corresponding to $2 in Fig. 20, but, rather, the saddle $3 
in Fig. 20; in other words, starting from the birectangle R(I o, Io), it is no 
longer convenient to continue the contraction along frame shapes, but, on 
the contrary, the internal rectangle starts its independent shrinking, 
keeping the external rectangle fixed. It appears clear that if h < 22, then the 
shrinking and disappearing of the internal two-by-two rectangle is just a 
downhill path where the number of internal plus spins decreases monotoni- 
cally to zero. If we were considering a general initial condition corresponding 
to the above case 1, namely the contraction o fa  subcritical frame for h > 22, 
then we would have had/o > 2 and the shrinking and disappearance of the 
internal rectangle would have followed a sequence of squared or almost- 
squared rectangular shape exactly as in the case of the standard Ising 
model. 
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In the following we will consider birectangles R(L~,  L2, Mr, M2) [see 
(3.3)] also for Ll ,  L2 =0 ,  1. 

Then the third part for h < 22 is just the downhill path: 

. ~ 3 = S ~ , R ( 1 , 2 ; 4 , 4 ) , R ( 1 , 1 ; 4 , 4 ) , R ( O , O ; 4 , 4 )  (7.16) 

where by S* we denote the saddle depicted in Fig. 20 when the external 
rectangle is a 4 x 4 square and the internal cluster is a "triangle made by 
three sites." 

Finally, the fourth part is just an Ising-like contraction of the remaining 
4 • 4 rectangle of zeros. We will observe first a sequence of permanence sets 
(corresponding to stable rectangles) and saddles and finally the downhill 
path describing the disappearance of the last 2 x 2 stable rectangle. 

We have 

~4=S1 ,  RI, $2, R2, $3, R3, S4, R4, ~ (7.17) 

where /]~ = R(0, 0; 4, 3) w R(0, 0; 3, 4), /]2 = R(0, 0; 3, 3), t]3 = R(0, 0; 3, 2) 
uR(0, 0; 2, 3), and/ ]4  =R(0,  0; 2, 2); the downhill path ~ is given by 

~b := Ss, R5, R6, - - !  (7.18) 

with / ]5=R(0,0 ;  1, 2) u R(0, 0; 2, 1), / ]6=R(0 ,0 ;  1, 1); the saddles Si, 
i = 1 ..... 5, are obtained from the rectangles in /]; by adding a unit-square 
protuberance to one of its longer sides. 

This concludes the definition of g for h < 22, d < (h + 2)/2h. 
In the case h < 22, 6 > (h + 2)/2h the definition of g is almost identi- 

cal; we only have to modify slightly at the very beginning the definition of 
by eliminating its first permanence set. 

Indeed we know from Section 5 that now H ( S ( I * - 1 ,  l * ) ) >  H(S( I* ,  
/*)), so that the protocritical saddle is, in this case ~ ,b  = S ( I * - - 1 ,  1"). 
Now the configuration ~ obtained from ~ by erasing the unit-square 
protuberance is the subcritical rectangle ,~l = R( l* - l, l* ); again this 
belongs to case 1. Then the first permanence set is now At,,_ i. t* - i  and we 
have 

~/~ = A f t _ j , / , _  l , S(I* - 1, l* - 1), A t .  2 , / . _  I �9 S(/~, s  1), 

AL. r_, S(L,  L)  (7.19) 

The other segments of the tube g,., i = 2, 3, 4, are defined exactly as before. 
The last case that we still have to analyze to construct g is h > 22. In 

this case the protocritical saddle is ~ = ~ and the tube ~ is just an Ising- 
like contraction along squared or almost-squared rectangular clusters of 
zeros in a sea of minuses. 
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Now the configurations obtained by erasing the unit-square 
protuberance containing a unique subcritic~il rectangle of zeros in a sea of 
minuses is given by 

~ = /~(M* -- I, M*)  

Notice that ~ is included in case 2 above. 
We observe that the appearance of a single plus spin will induce the 

overcoming of an energy barrier greater than or equal to 4 J -  (h + 2). It is 
very easy to see that we can proceeded with the construction of the set of 
the standard cascades emerging f r o m / ~ ( M * -  1, M*)  without being forced 
to overcome a barrier larger then 2J, so that certainly in all these standard 
cascades, for our choice of the parameters, we will never see a single plus 
spin appearing. Indeed one can easily convince oneself that the sequence of 
minimax problems to be solved is the exact analog of the that arising in the 
analysis of a subcritical contraction for a standard Ising model. We refer to 
refs. 9 and 19 for more details. For  completeness in the following we sum- 
marize the results using our notation. 

The first permanence set is B(R(M*-1,  M*)). 
Let us define the following sequences of pairs of integers: 

(ll, m l), (12, m2) ..... (l N, raN), N = 2M* - 2 

( I I , m l ) = ( M * - I , M * ) ,  (IN, nlN)=(1 , 1) 

Ili--mil<~l: mi=li or mi=li+l  

if (li, mi)=(l , l+l)  then (li+l,mi+~)=(l,l) 

if (li, m A = ( L l )  then (1~+1,m~+1)=( l -1 ,1)  

Given (Lm) as before: for I / - m l ~ < l ,  l ~ < m ~ < M * - l ,  we denote by 
S(l,m) the saddle obtained from R(l,m) by adding a unit-square 
protuberance (with a zero spin inside) to one of its longest sides. 

We have 

�9 ~ =B(R(ll, mr)), S(12, m2), B(R(12, m2)),..., S(I N, raN), R(IN, mN), --! 

This concludes the definition of f t .  

Let us now pass to the definition of the descent part ~ of the tube 3-. 
We start from the case h < 22, ~ > (h + 2)/2h. 
It is immediately seen that by adding to ~ = ~ . b -  S(l*--1, l*) a 

unit-square protuberance to form a stable protuberance of length 2 we get 
a configuration 1/0 included in case 3. 

We distinguish in ~,a two parts: ~,,c i and ~,d. 2- 
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For l* - -1  ~ l <  3 ) - - 2  we denote by A/-] . t  the cycle given by the 
maximal connected set of configurations containing C(l -1 ,  l) with energy 
less than H(S(l,I)). We easily verify that F( Al_ l. i) = C( l -  l, l), 
5e(Ai- 1. I) = S ( I -  1, l). 

For l* ~< l < 3 ) -  2 we denote by Az. z the cycle given by the maximal 
connected set of configurations containing C(l, l) with energy less than 
H(S(I, l+ 1)). We easily get that F(A/.~)= C(1, l), 6e(At. /)=S(/ ,  l +  1). 

For l * - 1  ~ < / < 3 ) - 2  we denote by 12z_]. ~ the set of downhill paths 
starting from S ( l - 1 ,  l) and ending in Zz_ i. ~. Similarly, for l*~< l <  3 ) - 2  
we denote by 12/. / the set of downhill paths starting from S(l, l) and ending 
in A/. z. We set 

~/.  1 =/I0, A/*-1. /*,  S(I*, 1"), f2/../., A/*./*, 
S(I*, 1" + 1), g2/,./, + 1 ..... S(3) - -  2, 3 ) - -2 )  

As it has been shown in Section 4, for l>~ 3 ) - 2  the growth is typically 
symmetric in the sense that the probability of growth in the directions 
parallel or orthogonal to the shortest side of our supercritical frame are 
logarithmically equivalent for large ft. Moreover, it follows from the 
analysis developed in Section 4 that for l ~ > 3 ) - 2  the set @ defined in 
(4.14) does not play any particular role and the permanence sets are cycles 
given by the strict basins of attraction of frames C(l~, 12) or birectangles 
R(II,/2). The second part ~ .  z of ,~/will describe the supercritical growth 
starting from l = 3 ) - 2 .  To construct ~ . ,  we need some more geometrical 
definitions. 

For a given frame C(l I lz), we use the notation C(/, m) to make explicit 
the shorter and longer sides l and m, respectively. 

We denote by G>(l, m), G<(l, m), respectively, the saddle configura- 
tions containing a unique droplet obtained by attaching a unit-square 
protuberance (with a zero spin inside) to a longer or shorter external side 
of C(l, m). 

We denote by R>(l ,m),R<(I ,m),  respectively, the birectangles 
obtained from G>(l ,m) ,  G<(l,m) by extending the unit-square 
protuberance to an entire side. 

We denot~ by S>(l, m), S<(I, m), respectively, the saddle configura- 
tions containing a unique droplet obtained from R>(l ,m) ,R<(l ,m)  by 
attaching a unit-square protuberance (with a plus spin inside) to the inter- 
nal free side. 

We denote by g2>(l,m),g2<(l,m), respectively, the set of all the 
downhill paths emerging from S>(l ,m) ,S<(l ,m)  and ending in 
/~( C( l + 1, m) ),/~( C( l, m + 1 ) ); finally we denote by (2 > ( l, m), D < ( l, m ) the 
set of all downhill paths emerging from G>(/, m), G<(l, m) and ending in 
B(R> (l, m)), B(R<(l, m)). 
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Given (l,m), we denote by F>(l,m) the sequence B(C(I,m)), 
G>(l,m), D>( / ,m) ,  B(R>(I,m)), S>(Lm), g2>(/,m), B(C(1, m+I) ) .  
Similarly we denote by F<(l,m) the sequence B{C(I,m)), G<(/ ,m) ,  
0 < ( l ,  m), B(R <(l, m)), S<(I, m), I2 <(/, m), B(C(I+ 1, m)). 

A sequence (/;, mi)i= i. 2.... with l; ~< m~ is called regularly increasing if: 
/ , = m r  = a r  and, for any i =  1,2 ..... either (/~+~,m~+~)= 

(li, mi) > :=(I~+ 1, mi) or ( I j+l ,mi+l) - ( l i ,  mi) < :=(li, mi+ l). 
If lg=m,=L =the side of our torus A, we set l ; + ~ = m , + ~ = L .  
Let &a be the set of  all regularly increasing sequences. For  any 

(li, mi)i= 1, 2.... i~ ~ we define 6(li, mi) : =  > if (li+ I, mi+ 1) =-  (li, mi) > and 
6(li, mi) := < if ( l i+l ,mi+l)~(l i ,  mi) <. 

From the arguments developed in Section 4 it easily follows that the 
second part of ~,,t is given by 

< , . - '  = U V~.,.,,,i,(l,. m,) 
(Ih mi}i= I, 2... ~ ~/" 

u F,~,~, ,,,,_~(12, m2) vo ... u F~,I~" ,,,,l(li, mi) u ... 

This concludes the construction of ~'71 for the case h < 22, 3 > (h + 2)/2h. 
The case h < 22, ~ < (h + 2)/2h requires only minor changes: the only 

difference is that now we have to start a step further. Indeed it is 
immediately seen that by adding to ~ =~, , , - - S ( l * ,  1") a unit-square 
protuberance to form a stable protuberance of length 2 we get a configura- 
tion ~Io included in case 4. We have 

" ~ d , l  = ? ] 0 '  ml*,l*, S(I*, 1" + 1), Q/*.t, + I . . . . .  S(M* - 2 ,  M * - 2 ) .  

The rest is identical. 
For  the case h > 22 we have exactly the same behavior as in the Ising 

model, namely we consider an initial condition as in case 5. Then we have 
a symmetric growth along a sequence of supercritical growing rectangles of 
zeros in a sea of minuses up to the configuration _0. Subsequently we have 
again an Ising-like nucleation of a protocritical droplet of pluses in the sea 
of zeros [an L * x ( L * - 1 )  rectangle with a unit-square protuberance 
attached to one of its longer sides] up to the configuration +1.  This last 
case has been already analyzed in detail (see, for instance, refs. 13 and 19). 
We leave the details to the reader, 

One can easily convince oneself that this indeed concludes the con- 
struction of the set of all standard cascades emerging from any of the 
above-specified five types of initial conditions for any value of the 
parameters (not only for the subcases that we have explicitly treated). 
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We can now state our main result on the tube of typical trajectories 
during the first excursion between - 1  and + 1. 

Let F := ~ ,  u ~ u ~ with ~ ,  given by the time reversal of the set of 
standard cascades in ~ c  ff emerging from ~:  ~,, := ~ f f  (the time-reversal 
operator acts on paths in this way: for co = (x~, x2 ..... XN_ l, XN): ~.co = 
(X^,, XN-I ..... X,, X~)]; ~,a given by the set of standard cascades in A c ff~ 
emerging from ~.  Let ~ be either .~ or ~ according to the values of the 
parameters J, h, 2; let ~ be either ~ or ~,_ according to the values of the 
parameters J, h, 2. 

T h e o r e m  2. Consider the dynamical Blume-Capel model described 
by the Markov chain with transition probabilities given in (2.6) of Sec- 
tion 2. For  any choice of the parameters J, h, 3~ compatible with (3.17) we 
have the following: (i) 

lim P_!(a ,  e.~- Vte  [ f _ ! ,  r + ! ] ) =  1 
[ / ~  cc 

The history of the process in ~-- is described in the following way: consider 
an initial configuration t/o corresponding to one of the following five cases: 

1. A = A : J ? o e A c ~ [ R ( l , l ) u R ( l , l + l ) ]  for some l>~/:. 

2. A = A : r / o e R ( M * , M * - - I ) .  

3. A =A,  0 < 2 < h < 2 2 ,  and d > ( h + 2 ) / 2 h : r / o s B ( C ( l * - l , l * )  ). 

4. A =,4,  0 < 2 < h < 2 ) . ,  and d < ( h + 2 ) / 2 h :  r/o e B( C( l*, l*)). 

5. A = ~ :  17o e B ( R ( M * ,  M*)) .  

Then, considering for any such A, r/o the set of all standard cascades 
emerging from Ilo and falling into F(A) we have (ii) 

3 d > 0  such that lim P,~o(re (A)<exp( f l [H(r / l ) - -H(F(A) ) - -~] )= 1 

and (iii) 

lim P,o(Vt ~ r~A): x,  e ,Y'(r/o, col, r/i, co2 ..... r /M- l ,  tOM) 
f l ~  

for some standard cascade r/o. col. r/l. co2 ..... r/M-I, COM') = 1. 

and, moreover (iv) with probability ~ 1 as fl ~ or, there exists a sequence 
r/o, col, r/i, co2 ..... r/M-l,  tOM such that our process starting at t = 0 from r/o, 
between t = 0 and t = r~Ai, after having followed the initial downhill path 
co 1, visits, sequentially, the sets A l, A 2 ..... A M- I exiting from Aj through r/j 
and then following the path coj+l before entering Aj+l. 
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For every e > 0 with probability tending to one as fl ~ oo the process 
spends inside each Aj a time Tj(e): 

exp(fl[ H(r/j) - H( F( Aj) ) - el ) < Tj(e) < exp(fl[ H(r/j) - H( F( Aj) ) + ~] ) 

and before exiting from Aj it visits each point in Aj at least exp (fie) times. 

Proof. We easily get that 

lim P~,(al e.r l al �9 (g)= 1 (7.20) 
f l ~  

Indeed (7.20) follows from the fact that there is only one first possible step 
in any downhill path from N to ~: it corresponds to erasing the unit- 
square protuberance to get ~ .  On the other hand, we have 

lim P.~.h(al =r/o[ al � 9  = 1 (7.21) 

The proof is an immediate consequence of Theorem I, (7.20), (7.21), 
Theorem 1 in ref. 15, and the results of ref. 20. | 

8. CONCLUSIONS 

We have described the metastable behavior of a dynamical 
Blume-Capel model. Our updating rule is given by the classical Metropolis 
algorithm, but it is clear that our results extend to a wide class of single- 
spin-flip reversible dynamics. 

Our results refer to the asymptotic regime of small but fixed magnetic 
field h and chemical potential 2, large but fixed volume A, and very large 
inverse temperature ft. 

We take mainly the point of view of the so-called pathwise approach to 
metastability, aiming to describe the typical behavior of the random trajec- 
tories of our stochastic dynamics rather than describing the evolution of 
the averages. 

The Blume-Capel model exhibits the interesting feature of the 
presence of three possible phases. The equilibrium phase diagram is, conse- 
quently, very rich and interesting. The most important aspect from the 
point of view of the study of the dynamics of metastability is the presence, 
near the triple point, of two competing metastable phases. This means that, 
for instance, if one wants to describe the decay from the metastable - l  
phase to the stable + ! phase one has to take into account the presence of 
another metastable phase: 0. 
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We took as initial condition the state - 1  and we analyzed the region 
of parameters 0 < 2 < h. Let us subdivide it into the regions II and III 
defined as follows: 

I I : = 0 < 2 < h < 2 2  

III : = 0 < 2 2 < h  

It is easily seen that, with the same arguments developed in Sections 3-6, 
we could analyze the region 

IV : = 0 <  - 2 < h  

as well. In regions II, III, and IV the stable equilibrium phase (absolute 
minimum for the energy) is + 1 and we have: 

H(--!)> H(O_)> H( + !) 

In the region 

I : = 0 < h < 2  

we have 

H(O)> H ( - 1 ) >  H( + I) 

and then it is reasonable to expect and not difficult to prove that in the 
decay from - !  to + 1 the state 0_ does not play any role. Indeed it is suf- 
ficient to exhibit a mechanism of transition from - 1  to + 1 involving an 
energy barrier smaller than H(_0)- H ( - 1 ) .  

This is very easy to achieve if the volume A is sufficiently large. 
In this paper we analyzed in detail the regions II and III, which 

happen to be, in a sense, the most interesting ones. In region IV one has 
the same local minima for the energy as in regions II and III; they are sets 
of noninteracting plurirectangles; but now the comparison between the 
times tl, t2, t3, t4 introduced in (3.13) changes totally. The main difference 
w.r.t, the regions II, III is that now, in IV, we have 

M* < L* 

and so we cannot even consider a possible mechanism of nucleation along 
a sequence of frames. Indeed one has that a birectangle is supercritical if 
and only if the minimal external side is not smaller than M*. Then, as in 
region III but in a much easier way, we can prove that the escape from - 1  
starts with an Ising-like nucleation of a protocritical droplet ~ leading 
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to 0. But now, contrary to region III, the typical time T --~-~ for going 
from - 1  to 0 is much shorter than the typical time TO- ~ § for going from 
_0 to + ! ,  so that the asymptotics of the time T - - ~  § of the transition 
from - 1 to + 1 is dominated by T O- ~ + !. 

The situation in which a p r i o r i  one could expect a competition 
between the two metastable phases would be at first glance the union of the 
regions II, III, and IV. By arguing more carefully with a heuristic analysis 
of the heights of the possible barriers between - !  and 0 and between - !  
and + 1 (given by the energy of formation of suitable critical droplets) one 
is led to expect that the two metastable phases corresponding to - 1  and 
0 are in a sense really competing only around the half-line 0 < h  =22  
separating the regions II and Ill. This value h = 2;~ depends on the par- 
ticular form of the Blume-Capel Hamiltonian. 

The main result of the present paper is a rigorous proof of the above 
heuristics. 

From the mathematical point of view we had to solve some large- 
deviation problems. This kind of problem would be extremely hard for a 
general nonreversible dynamics, but the treatment is very much simplified 
by the reversibility property of the dynamics. 

In particular, to get the result we had to solve the minimax problem 
of the determination of the global saddle between - 1  and + 1. This is the 
really hard point of the work. We could handle the large-deviation 
problems ~ la Freidlin-Wentzell arising in the study of some rare events in 
the framework of our low-temperature Metropolis dynamics by taking 
advantage of a general approach to the study of typical trajectories, during 
the first exit from a non-completely attracted domain, recently developed in 
ref. 15. Nevertheless we still had to face the crucial model-dependent part 
consisting in solving some geometrically quite involved variational 
problems. 

In particular we had to exclude, as highly reduced in probability, any 
mechanism of transition based on coalescence and we had to single out, 
among many others, only very few possible mechanisms of nucleation. 

We were able to compute rigorously the lifetime of the metastable 
state, namely the typical transition times T~. h, for different values of the 
parameters ;~, h. It turns out that these transition times are given by 

T;.. i, ~ exp(flF;., h) 

where the "activation energy" for very small values of ;~, h has the expression 

8 J  2 
F ; . . h - -  T for 0 < 2 < h < 2 ) ~  (8.1) 
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and 

4 j  2 
F ; . . h ~ h _  2 for 0 < 2 2 < h  (8.2) 

F - I  ~ o  The value 4 J 2 / ( h - 2 )  is just the activation energy ~.i, - for the 
transition between - 1  and 0_. The activation energy for the transition 
between 0 and + !  is always (approximately) given by 

4J  z 
F_O- +t  ~ _ _  (8.3) 

h + 2  

--1~0 04+1 In region III  we have F;.,j, ->  F-~..~, - and this is the reason for (8.2); but 
- - I ~ 0  0 ~ + 1  in region IV we have the opposite, F;..i , - < F L h  - so that we get 

4 J  2 
F;"h ~ h + 2  for 0 <  - 2 < h  (8.4) 

This answers a question raised in ref. 6 about the "validity of Van't Hoff-  
Arrhenius law," which would predict in our case a decay - ! - - *  _0-~ + 1 
with an asymptotics of the transition time determined by T --~ ~ 9 

- h  

['-),,h 

. 

h / 2  +h  

Fig. 46. 
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Our results can be interpreted by saying that this law is valid in the 
region III, whereas it is violated in regions II and IV for different reasons. 

The new phenomenon about which apparently there is no reference 
even in the physics literature is the possibility of a "direct" transition 
between - 1  and + 1 and also a possible change in the mechanism of trans- 
ition for different values of the parameters. 

Notice that if we take a fixed small value of h and we vary 2, the 
analytic expression of F;.. i, changes when we cross the lines h = 22, 2 = 0. 

We draw in Fig. 46 the graph of Fah as a function of 2 for a fixed 
small value of h. 

A P P E N D I X  

In this appendix we want to state and prove Proposition A1 below. It 
refers to the first escape from a transient cycle A (see below) and, roughly 
speaking, it says that, under general hypotheses, with high probability, 
after many attempts, soon or later our process will really escape from A 
entering into different cycle by passing through one of the minimal saddles 
of the boundary of A. 

The time for this transition has about the same asymptotics as the first 
hitting time to the boundary of A. 

The result of Proposition A1 was used before without an explicit proof 
(see, e.g., refs. 9 and 10; it is, in fact, a simple consequence of the strong 
Markov property, but we think it useful, in order to better explain its state- 
ment, to eventually provide an explicit proof. 

We will state our results in a slightly more general setup than the one 
considered in the present work (we also use a different notation), we will 
consider general Metropolis reversible Markov chains. 

We suppose we are given an ergodic, aperiodic Markov chain 
(X,),=o. 1.2 .... with finite state space g? and with transition probabilities 
P(x, y) satisfying the following hypothesis. 

Hypothesis M. There exists a function H: g2 ~ R + such that 

P(x, y) = q(x, y) exp( - f l [  H(y)  - H(x) ]  + ) (A.1) 

where q(x, y)= q(y, x) and (a)+ is the positive part ( :=  max{a, 0} ) of the 
real number a. 

The above choice corresponds to a Metropolis Markov cha#~ which is 
reversible in the sense that 

Vx, x' e.O: lt(x) P(x, x') =lL(x') P(x', x) (A.2) 
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with 

/t(x) oc exp(--f i l l (x))  (A.3) 

One can introduce the notions of pair of communicating states, path, 
connected subset of g?, boundary OQ of set Q c g? cycles .... as the obvious 
generalizations of the corresponding ones given in Section 2. 

For  any set Q c (2 we introduce the set of all the minima of the energy 
in the boundary OQ of Q: 

U(Q) := {zeOQ: min H(x)=H(z)} 
xeOQ 

(A.4) 

By F(Q) we denote the set of the absolute minima of the energy in the set 
Q c ~ :  

F(Q) := { y e  Q: min H(x)= H(y)} (A.5) 
x~Q 

A cycle A for which there exists y* ~ U(A ) downhill connected to some point 
x in A" [namely 3xCA, communicating with y*, with H(x)<H(y*)=: 
H(U(A))], is called transient; points like y* are called (m#Timal) saddles. 
,~(A) will denote the set of all minimal saddles of A. 

Let R=R(A) be the subset of A to which some point in 5~ is 
downhill connected: 

R(A) := { y E A such that 3z E 5"(A) with P(z, y) > 0} (A.6) 

Let V= V(A) be the analog of R outside A: 

V(A) := { y e A  such that 3ze5"(A) with P(z, y ) > 0 }  (A.7) 

We set 

:= R(A) u V(A) (A.8) 

Proposition A.1. Consider a transient cycle A. Given e>O, let 

T(t) :=exp fl[ H(Se(A))-- H(F(A)) + e] (A.9) 

Then, for every e > 0, x e A, 

lim Px(rlA,_,OA,+> T(e))=O (A.10) 

and 

lim P.,.(X:,A~o~,~ ~ V(A))= 1 (A.11) 
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Proof. From Hypothesis M and the definition of.9~ we know that 
there exists a positive constant c > 0, independent of fl, such that 

inf P(x, y) > c, lim sup P(x, y) = 0 (A.12) 
x e . ' / l A ) ,  >'e,/( 11~ ,::- x~.9'fAL ),~.h" 

We define the sequence r~ of stopping times corresponding to subsequent 
passage of our chain X, in aA: 

ro :=inf{t  >~0: X, ~Oa} 
(A.13) 

ol :=inf{t  > r,,: X, r 

and for j = 1, 2 .... 

rj := inf{ t > cr./: X, eOA} 
(A.14) 

crj :=inf{ t > rj_n: X, diOA} 

We set, for j - -  1, 2 ..... 

~ .=  [ r j_ ,  + 1, r/], Tj := I~l = r j - r j _ ~  - 1 (A.15) 

Suppose that X~j_~ +~ cA; let 

a* :=min  { t > r / X ,  CX~j} (A.16) 

We say that the interval ~ is good if the following conditions are satisfied: 

Tj < T(e) 

x~, ~,~(A) 

X #t ~ ..It 

Let 

j*  :=min{ j :  T: is not good} 

Given the integer N, we want to estimate, for every x e A,  the probability 
P.,.(r V(A)> NT(e)). 

We write 

P.,-(z yeA)> NT{e))= P,.(r v(,)> NT(e); j* > N) 

+P.,.(rV(A)>NT(e);j*<~N) (A.17) 

Let us consider the first event in the decomposition given in (A.17): 
{ r v,A)> NT(e); j*  > N}. 
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We have 

P. , ( r  v~l  > NT(e);  j *  > N)  

<~ P,.(X~, e ~9~ X~,+ , r V(A) ..... X~N 6 5g(A); STN+ , r V(A))  

~ < ( 1 - - c )  u (A.18) 

Now,  from P ropos i t i on  3.7 of  ref. 15, (A.12), and  the s t a t ionar i ty  of  our  
M a r k o v  chain  we have 

P.,.(.~ is not  good)  <~6(fl) (A.19) 

with 

l im 6(fl) = 0 (A.20) 
fl~ct2 

F r o m  (A.20) we get 

P , . ( r v t A ~ > N T ( e ) ; j * < ~ N ) ~ P , . ( j * ~ N ) < ~ d ( f l ) N  (A.21) 

To conc lude  the p r o o f  it suffices to choose  

N =  N(f l)  = 1/6(fl) 
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